WFS 536: Wetland Management Matthew Gray & Heath Hagy Department of Forestry, Wildlife, and Fisheries University of Tennessee-Knoxville

Lecture Outline

- I. Annual Cycle of Waterfowl
- II. Waterfowl Diet & Nutritional Requirements
- **III.** Moist-soil Management
- **IV. Agriculture Management**

What is the Annual Cycle?

- Series of inter-related events that occur during a year in the life of an animal
- Think about "home range" size
- What is the home range of:
 - -A Quail?
 - A White-tailed Deer?
 - A Black Bear?
 - A Mallard?

Annual Cycle of Waterfowl

The complex of physiological & behavioral events experienced by waterfowl during the course of a year.

- 1. Breeding
- 2. Fall Migration
- 3. Winter
- 4. Spring Migration

The Annual Cycle Different needs at different times

What major events happen to a duck during the year?

- Species variation
- Latitudinal variation
- Cross-seasonal effects
- Management at all stages

Nesting

- Most waterfowl nest in the northern U.S. and Canada
- Exceptions? = CANG, WODU, HOME
- Laying requires lots of protein = invertebrates!
- More resources means more eggs

Brood Rearing

- Same species that nest here
- Requirements similar to nesting phase
- Ducklings need – Invertebrates – Cover
- Managing some wetland area as summer marsh is beneficial

Post-Breeding

- Less need for cover
 - Drakes molting
 - Hens nearing molt
 - Switch to plant foods
- Loafing sites

Molt

- Energetically costly time of the year
- Wing molt requires lots of protein and essential amino acids
 - Found in natural wetland and
 - plant seeds

• Birds not mobile

Fall Migration

- Mid-latitude stopover habitats are very important
- High energy foods (fatty) are very important - High carbohydrate foods
 - M.S. / Ag. crops high in fat
- Thermal cover
- Refuge
- Hunting
- Slow & methodical

Winter

- Pre-alternate / Pre-basic molt
- Pair bonds
- High energy needs
- Courtship
- Cross-seasonal effects
- Open water
- Hunting

Fall - Winter: FIXED BIOLOGICAL DEMANDS

• Food

- Body condition and survival, feather replacement
- Water
 - Provides habitat for food acquisition and resting
- Cover
 - Forested wetlands & emergent wetlands Pairing
- Refuge
 - Survival, feeding, pair bonding, "source" for hunting, philopatry

-		

Spring Migration

- Often overlooked but <u>critical</u> stage
- relationship between spring condition and reproduction
- Spring food low?

• High-speed

- Seeds \rightarrow invertebrates
- Spring Migration Winter Foll Macline

Pre-Nesting

- Stopover sites and temporary wetlands important
- Some ducks carry reserves to lay eggs (i.e., snow geese)
 Endogenous resources
- Some get protein at breeding areas
 - (i.e., ruddy ducks)Exogenous resources
- Heavier birds nest earlier and are more successful

	Man		g Wetl 1e Ann		Throug ycle	hout	
Jan	Feb	M	ar A	pr	May J	une	July
Thern	o & Pair Bon	ding	Sp Migr	Nesting: F		-	
Pre-Ba	sic: Body (F)	+	Territory: M		Broods: F		-
				Bachelor Groups: M	Pre-Basic: Full I	Body (M), Wings	(M/F)
			Amphibians	Sp Mi	igration: Shorebirds	→	
July	Aug	Se	ept C	let	Nov	Dec	Jan
Broods:	F t	Staging	Fall Migration		Thermo & P	air Bonding	'
		e-Alternate: dy (F)	Pre-Alterna	te: Body (M)	_	Pre-Basic: Body (F)	
Fall Migra	tion: Shorebin	ds (assumed m		(iii)		Hohman e	et al. 1992

Managing Wetlands Throughout the Annual Cycle: Southeast Feb Mar May June July Jan Apr sting: Wood ducks, hooded mergs Waterfowl: Non-Residents Broods: F Amphibians Sp Migration: Shorebirds July Aug Sept Oct Nov Dec Jan Fall Migration: ds: F No Fall Migration: Shorebirds Months of Least Activity: March & August

Moist-soil Wetlands General Definition

Intermittently to seasonally flooded wetlands that are dominated by annual and/or perennial herbaceous hydrophytes.

Croplands – Agriculture

- Rice
- Soybeans
- Corn
- Milo
- Aquaculture

Harvested 1	Rice Field vs. N	Ioist-Soil
Habitat	Mean (kg/ha)	DUDs
Rice	78 ± 15%	897
Moist-Soil	496 ± 13%	4,196

Moist-soil 600 ^d 2.47*	1.883
Harvested crops	1,005
Rice 80 ^f 3.34 ^g	139
Soybean 60 ^h 2.65 ^g	37
Unharvested crops	\sim
Rice 5.240 ¹ 3.34 ^g	24.025
Sovbean 1.334 i 2.65 #	4,716
Milo 3.811 ¹ 3.49 ¹	18,192
Com 5.716 ⁱ 3.67 ^k	28,820
Japanese millet 1,500 ¹ 2.61 ^m	5,245
Bottomland hardwoods	\sim
30% red oak 81 ⁿ 2.67°	115
40% red oak 93 " 2.67°	161
50% red oak 106 n 2.67 °	207
60% red oak 118 n 2.67 °	253
70% red oak 131 " 2.67 °	299
80% red oak 143 " 2.67 °	345
90% red celt 130 2.67°	391

		Bioma	SS (kg/ha)	DED.	/ha
Crop	n	x	SE	x	SE
Corn	47	75	14	522	160
Soybean	48	45	8	164	55
Grain Sorghum	9	156	83	1381	970
			Moist	-soil = 5000 DE	D/ha

	10	Biomas	SS (kg/ha)	DED	/ha		
Crop	n	x	SE	x	SE		
Corn	39	6,260	591	78,079	7,416		
Soybean	16	2,190	439	19,423	3,987		
Grain Sorghum	4	3,051	601	35,874	7,18:		
Moist-soil = 5000 DED/ha Harvested Crops: 160–1300 DED/ha							

	t <mark>al Germ</mark> Harvest – Ja		
Corn	□ Soybean	□ Grain Sorghum	-
⁸⁰ 70 60 50	was deprei n sorghum d mposed	dated & soybean	-
40 - 30 - 20 - 10 - 0	AB	Å.	
- 1	2006	2007	

What have we learned?

1. Less food than we thought...

2. How do we mitigate decreased quality of foraging habitats?

Hydrologic Management (Fredrickson and Taylor 1982)

Spring Drawdown: Duration		<u>Date</u>	Multiple Combinations Good!
•Fast (2-3 da	ys)	•Early (April)	Good:
•Slow (2-3 w	eeks)	•Late (July)	
Plant Di	versity and Foods	Annuals & Bre	eding
Irrigation:	•Flooded shal •Offset droug	lowly (e.g., <10 cm) ht 2-3 Weeks	Eco. Trap
Winter Flooding:		2-4 weeks) & Sequer w (e.g., 10-20 cm)	itial Sept.

Hydrologic Management					
www.crisafulli.com	Moving Water	www.gator-pump.com			
Gravity (reservoirs, rivers)	Diesel or P	TO-Pumps & Wells			
Cheapest!					
Towable PTO-Pumps	Crisafulli® & Gator®	Electric Pump & Wells			

Hydrologic Management – Case Study 1

Evaluating Vegetative Quality and Waterfowl Use on Active and Reduced Management Regimes in Moist-soil Wetlands on WRP lands in Mississippi

Active management with <u>late draw-</u> down (early summer)

+ duck response

+ vegetation response compared to Active

Hydrologic Management – Case Study 1

Crayfish Harvest Potential and Ecosystem Services in Managed Moist-soil Wetlands

Active management with late draw-down (early summer)

+ Crayfish Harvest Potential (1 - 7.7 kg/ha/day)

- + water quality benefits
- + wildlife habitat

Mechanical Manipulations of Moist-soil Wetlands (Fredrickson and Taylor 1982; Gray et al. 1999)
(Disking, Tilling, Scraping or Mowing)
Primary Goal: Set back Succession 2-3 Years (Rotation
Spring Manipulations: (Historically: Northerly Approach)
Immediately after Early Spring Drawdown Disking
Autumn Manipulations: (SE Approach) is Best!
•As soon as possible after Early or Late Drawdowns
Delays 🔲 Heavy Precipitation, Breeding Waterfowl
• <u>Long growing season</u> and <u>climate</u> conditions can produce dense and continuous stands of hydrophytes <u>Secondary Goal</u> : Waterfowl Access

Fall Moist-soil Management

Natural Manipulations of Moist-soil Wetlands

n)

•Increase Aquatic Invert Biomass

Grazing: (similar to mowing) (Early Succes

Natural Manipulations of Moist-soil Wetlands

Other Manipulations of Moist-soil Wetlands Herbicide Application

Nuisance Plants

Agriculture •Ag. Var. Hydrophytes •Higher Elevations •Mid-June •40 kg/ha; \$150/ha

Sesbania, Xanthium •2,4-D, Renovate 3: Broad-leaved

Why Forego Mechanical Manipulations until Autumn?

Mechanical Manipulations

How many Disk Passes are Necessary?

Gray et al. (1999) Autumn Vegetation Responses Tro-779 Justic Vegetation Responses Disking and Tilling Mowing and Control Rohange in Vegetation! Disking and Tilling Mowing in Autumn Good for Opening Landing Areas for Waterfowl Opening

- Surveyed food-use literature to identify taxa commonly consumed by dabbling ducks
- 3. Estimated effects of removing taxa not identified as "duck food"

Secta and Tuber Use Image: Constraint of the sector of

	-		
5			
1, 14, 15			
5			
i, 15			

Summary

- Partial fall mowing
 - + seeds and tubers
 - + dabbling duck abundance and diversity
 - + invertebrate abundance and diversity
- Shallow flooding (<16 cm)
- Similar winter seed and tuber abundances among treatments (260 kg/ha)
- Ducks don't eat everything!
- Moist-soil wetlands must be managed to maximize food availability

Winter Cropland Management

- Flooding
- Stubble manipulation
- Supplemental seeding
- Moist-soil borders and patches
- Grassy crop remnants
- Ratooning

Manley et al. 2005; 200

Winter Flooding Benefits

- Food for waterfowl
- Decomposes crop residues
- Reduces winter weeds
- Reduces herbicide use in spring (\$25-30/acre)
- Replenishes ground water
- Improves water quality
- Prevents soil loss
- Waterfowl hunting and wildlife watching

Agriculture Management

Other Common Agricultural Foods Milo, soybeans, browntop millet, and common buckwheat (*Fagopyrum esculentum*)

enent anagement	-
Flooded Corn	
Flood Shallowly	

Ratooning?

Cropping for Ducks

Making Moist-soil "<u>Hot</u>"

- "Dirty" Rice
- "Grassy" Corn

Wetland Management Summary

- Pre-human habitat conditions will never be replaced
- Human needs vs.
 - Water Quality
 - Wildlife
 - Space

Less space = Better conditions in remaining natural habitat

Wetland Management Summary

- Natural wetlands have been highly altered or drained completely
- Private entities and conservation initiatives have stopped loss, but not replaced historical areas (e.g., WRP, CRP, Hunters, etc.)
- Natural wetlands may not ever be truly replaced
 - Altered flooding regimes
 - Timber demand
 Cellulosic ethanol
 - People

Reduced Quantity = Increased Quality

To fulfill Wildlife and Waterfowl Annual Cycle Needs

Create Hunting Access

