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Aquatic invertebrate and plant
responses following mechanical
manipulations of moist-soil habitat

Matthew J. Gray, Richard M. Kaminski, Govinda Weerakkody,

Bruce D. Leopold, and Kent C. Jensen

Abstract Managers mow, disk, and till moist-soil habitats to set back succession and increase inter-
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spersion of emergent vegetation and water for migrant and wintering waterbirds, We
evaluated effects of autumn applications of these manipulations on aquatic invertebrates
and moist-soil plants during 2 subsequent winters and growing seasons, respectively, at
Noxubee National Wildlife Refuge, Mississippi. Greatest seed mass was in tilled and
disked plots in 1993 (P<0.008) and in tilled plots in 1994 (P<0.008). Plant species diver-
sity generally was greatest in tilled plots in both years (P<0.05). Mowed and control plots
produced greatest aquatic invertebrate mass in winter 1992-93 (P<0.025) and diversity
in both winters (P<0.01). Invertebrate mass and plant standing crop generally did not dif-
fer among treatments in winter 1993-94 and both years, respectively. We recommend
autumn tilling in small moist-soil habitats to increase plant species diversity and seed
yield. For large-scale management, disking may be more practical than tilling and would
likely yield similar plant responses. We recommend autumn mowing if moist-soil habi-
tats exist in early seral stages and contain desirable seed-producing plants that are robust
and do not readily topple following flooding to create open water areas for waterbirds.

aquatic invertebrates, hydrophytes, Mississippi, moist-soil management, waterfow!

habitat, wetland management

Moist-soil habitats are seasonally flooded wet-
lands dominated by annual and perennial
hydrophytes (van der Valk 1981). Managing these
wetlands is practiced widely in the United States to
provide habitat, especially for waterfowl
(Fredrickson and Taylor 1982, Smith et al. 1989).
Managed moist-soil habitats typically are impound-
cd by levees with control structures to manipulate
hydrology within them (Baldassarre and Bolen
1994:489). Managed moist-soil habitats usually are
drained during spring or summer to promote
growth of hydrophytes, then flooded during
autumn and winter (Reid et al. 1989). Generally,

these wetlands provide rich sources of seeds,
tubers, browse, and aquatic invertebrates for a vari-
ety of migrating and wintering waterfowl and other
wetland-dependent wildlife (Fredrickson and Taylor
1982, Fredrickson and Reid 1986, Duffy and LaBar
1994).

Managers mechanically manipulate moist-soil
habitats during spring and summer to set back suc-
cession and increase plant productivity and diversi-
ty (Fredrickson and Taylor 1982). However, manip-
ulations may be delayed until late summer or
autumn because managers may desire to keep areas
flooded for breeding waterbirds (Bellrose and
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Holm 1994:500-502,Tacha and Braun 1994) or soils
may be too wet to support heavy machinery
(Heitmeyer et al. 1989, Kelley 1990). Additionally,
managers may perform autumn manipulations to
increase interspersion of vegetation and open
water after flooding to facilitate habitat and
resource use by migrant and wintering waterbirds
(Gordon et al. 1989, Heitmeyer ¢t al. 1989, de Szalay
and Resh 1997). Mowing, disking, and tilling are
common manipulations performed in moist-soil
habitats during autumn; however, their effects on
aquatic invertebrate and moist-soil plant communi-
ties have not been widely investigated (de Szalay
and Resh 1997). Thus, our objective was to test
cffects of autumn mowing, disking, and tilling on 1)
aquatic invertebrates during winter and 2) moist-
soil plants at the end of the subsequent growing
Season.

Study area

We conducted our study at Noxubee National
Wildlife Refuge (NNWR) in east-central Mississippi
(Wehrle et al. 1995). The specific study area was an
80-ha moist-soil management complex, consisting
of 11 interconnected impoundments. Refuge per-
sonnel flooded these impoundments (via gravity
flow) between early November and January and
maintained inundation until mid-April. Water from
an adjacent 17-ha reservoir and from natural pre-
cipitation and runoff was used to flood impound-
ments.

Specific study sites were 4 impoundments. We
sclected impoundments using the following crite-
ria: 1) presence of continuous, unbroken, emergent
vegetation; 2) presence of a plant community dom-
inated by 1-2 perennial or late seral emergent plant
species; and 3) availability (i.c., no other ongoing
management). We used impoundments 2 and 8 (9.6
and 7.1 ha, respectively) as study sites in 1992-93,
and impoundments 5a and 7 (1.9 and 5.1 ha,
respectively) in 1993-94. Swamp smartweed (Poly-
gonum  bydropiperoides) dominated impound-
ments 2 and 8 and impoundment 7. Beakrush
(Rbynchospora globularis) and sedge (Carex
fupulina) were co-dominants in impoundment 5a.
Soil in impoundments was primarily Mathiston silt
loam (Brent 1973, 1986).

Methods
Experimental design
We designated individual impoundments as
experimental blocks because of different pre-treat-
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ment vegetation structure or composition. We used
2 different impoundments each year to replicate
treatments spatially within the study area. We
established 4 square replicate plots (100 m2 cach)
per habitat treatment (i.¢., mow, disk, till, and con-
trol) in September 1992 and 1993 within cach
impoundment. Within each 100-m? plot, we ran-
domly located 5 subsampling plots (1 m2) using a
grid system and random numbers table. Therefore,
we collected aquatic invertebrate and vegetation
data from 20 subsample plots/treatment/impound-
ment (5 subsamples x 4 replicates). However, we
collected 15 subsamples from tilled and disked
treatments and used these data in analysis of vege-
tation data in 1993 because water persisted over 1
replicate plot of each treatment during the growing
season and appeared to affect plant responses. We
averaged subsample data from each 100-m2 plot to
provide a single datum per replicate plot, and the
subsampling error was partitioned in analyses.

Habitat treatments

We randomly assigned habitat treatments to 100-
m? plots in October 1992 and 1993. Vegetation was
cut to approximately 10-15 ¢m above ground using
a tractor-drawn rotary mower for the mowed treat-
ment and for site-preparation of disked and tilled
plots. A disk (55-cm diam) harrow and tractor-
drawn rototiller were used after mowing for disked
and tilled treatments, respectively. Although disking
and tilling were performed following mowing, they
are referred to hereafter as disking and tilling, We
suspended avian exclusion netting over 100-m?2
plots in October 1992 and 1993 to prevent depre-
dation of invertebrates and plant propagules by
birds and other vertebrates (Severson 1987:28).

Water-level management

Refuge staff flooded impoundments with water
from the reservoir and rainfall to a depth of approx-
imately 30-45 c¢m from mid-late November 1992
and 1993 until mid-April 1993 and 1994. Spring
drawdown occurred in <3 days (i.c., a fast draw-
down; Fredrickson and Taylor 1982) to remove
water from plots as simultaneously and uniformly
as possible.

Refuge staff also irrigated impoundments
using water from the reservoir in both mid-June
and early August 1993 and 1994 for 8 consecutive
days to minimize apparent drought stress on vege-
tation. Water depths in impoundments were moni-



tored closely to avoid submersion of plants.
Impoundments 2 and 8 could not be irrigated
simultancously in 1993 because they were located
at opposite ends of the management complex;
hence, time between irrigation of these impound-
ments was about 2 weecks. Impoundments 5a and
7 were irrigated simultaneously in 1994,

Aquatic invertebrate sampling

We sampled invertebrates between mid-
December 1992 and 1993 and mid-March 1993 and
1994. We took 5 subsamples with a sweep net (25
x 45 cm) at random locations within each 100-m?
plot/treatment/month. We used a sweep net
because this device was most practical for our sam-
pling conditions and it was more effective at col-
lecting a complete representation of existing inver-
tebrates than core or plankton-net samplers (Cheal
et al. 1993). We selected 5 new random subsam-
pling sites monthly to prevent sampling the same
sites through time. We completed field sampling in
2 days each month. To acquire a quantitative esti-
mate of available invertebrates, we pushed the
sweep net along and in contact with the substrate
for 2.22 m to sample a 1-m2 area (Wehrle et al.
1995). Subsamples were placed in individual plas-
tic bags and refrigerated at 4-5°C until processed
to reduce decomposition of invertebrates and asso-
ciated organic matter. We randomly assigned pro-
cessing order to all subsamples so any decomposi-
tion of invertebrates was distributed equally among
treatments.

We removed invertebrates from collected sedi-
ment and litter in the lab to determine dry mass by
family and treatment. We identified insects using
Merritt and Cummins (1984); we used Pennak
(1989) and Thorp and Covich (1991) to identify
other invertebrates. We placed invertebrates of
each family in an aluminum pan and dried them for
24 hours in a forced-air oven at 105°C (Driver 1981,
Wehrle et al. 1995). We weighed all invertebrates of
a family to the nearest 0.001 g, then we summed
masses across families to derive total dry mass/m?2.

We used dry mass of cach family to calculate a
Shannon-Weaver index of invertebrate diversity
(Ludwig and Reynolds 1988:90-91). We used bio-
mass instead of relative abundance (or density) to
compute diversity because biomass can be a more
direct indicator of relative importance and ener-
gy-nutrient availability in ecological communities
(Lyons 1981).

Vegetation sampling

Vegetative variables included above-ground
standing crop. plant species diversity, and seed
mass. We monitored seed maturation visually dur-
ing weekly visits to plots, beginning in early
September 1993 and 1994. Variables were meas-
ured when seed fall initiated (i.e., mid-October
1993, late September 1994).

We estimated above-ground standing crop by
clipping plants at ground level from a randomly
selected half of each 1-m? plot (van der Valk 1989).
We placed clipped vegetation in plastic bags and
refrigerated it at 4-5°C to retard decomposition
until processed. As with invertebrate samples, pro-
cessing order was randomly assigned to subsam-
ples, so any decomposition was distributed equally
among habitat treatments. Before drying, we iden-
tified plants using Radford et al. (1968) and sorted
plants by species. We oven-dried subsamples at
60°C to a constant mass (van der Valk 1989). After
drying, we weighed plants by species to the nearest
0.1 g and summed masses across species to derive
total above-ground standing crop/0.5 m2. We cal-
culated the Shannon-Weaver index to estimate
plant species diversity/plot. We used above-ground
biomass/species as an indicator of relative impor-
tance to calculate the diversity index (Lyons 1981).

We discovered that sceds were sometimes dis-
lodged from inflorescences during plant clipping
and bagging. Consequently, seed-mass estimates
from clip plots could have been negatively biased
because of accidental seed loss. Therefore, we col-
lected from both impoundments a random sample
of all seed-producing species occurring in plots
(n=060 individuals/species), threshed and oven-
dried (i.c., 50°C for 24 hours) seeds from inflores-
cences, weighed dried seeds to the nearest 0.1 g,
computed a mean seed mass/plant species (from
the 60 individuals), multiplied mean seed
mass/plant species by its mean stem density/plot,
and summed across all species within plots to
derive a relative estimate of total seed mass/0.5 m?2.
Seed-producing species occurring in plots and col-
lected for estimates included barnyardgrass
(Echinochloa crusgalli), red-rooted flatsedge
(Cyperus erythrorbizos), swamp smart-weed, panic
grass (Panicum agrostoides). fall panicum (Pdicho-
tomiflorum), beakrush, and sedge. Seed threshing,
drying, and weighing procedures followed Laubhan
and Fredrickson (1992).



Table 1. Aquatic invertebrate familial diversity and total dry mass following autumn tilling, disking, mowing, and no treatment
(control) in moist-soil management impoundments (IMP) 2 and & and 5a and 7, winters 1992-93 and 1993-94, Noxubee Nation-
al Wildlife Refuge, Mississippi.

Till Disk Mow Control
Variable Winter R SE2 s SE X SE by SE
Diversit‘gb 1992-93 0.16A% 0.012 0.21A 0.013 0.298 0.011 0.42C 0.013
1993-94 0.16A 0.012 0.26B 0.012 0.28B 0.012 0.41C 0.015
Biomass -gfm;?l 1992-93 0.09A 0.010 0.10A 0.011 0.19B 0.014 0.17B 0.009
IMP4 5a 1993-94 3.12A 0.502 2.24AB 0430 1.38B 0.210 0.74B 0.133
IMP 7 0.10A 0.014 0.17A 0.015 0.13A 0.014 0.18A 0.017

a n=8, 100-m? plots; however, when IMPs were analyzed separately, n=4 plots.
b Shannon-Weaver diversity values were calculated using invertebrate biomass instead of relative abundance (Lyons 1981).
€ Means within rows with the same letter do not differ (P> 0.05) by Ryan's-F multiple comparison test (SAS Institute 1987:241).

Biomass data analyzed separately by IMP because of a treatment-by-IMP interaction (P=0.001).

Statistical analyses

We analyzed data by years because impound-
ments and vegetation within them differed. We
used a generalized randomized block (GRB) multi-
variate analvsis of variance (MANOVA) with sub-
sampling error to analyze plant data because 3
dependent variables (i.e., seed mass, species diver-
sity, above-ground standing crop) were fitted to the
same effects (i.e., block and treatment; Barker and
Barker 1984:15). We also used MANOVA to analvze
monthly samples of aquatic invertebrate data (Hand
and Taylor 1987:52-53) because MANOVA relies on
less restrictive assumptions than repeated meas-
ures ANOVA (Milliken and Johnson 1992:432).
Additionally, certain MANOVA test statistics (e.g.,
Pillai-Bartlett [P-B]) are robust to violations of mul-
tivariate assumptions (Olson 1974, 1976, 1979).
Aquatic invertebrate diversity and mass were ana-
lyzed separately with monthly (Dec-Mar) respons-
es as dependent variables and treatments and
blocks as independent effects.

When MANOVA was significant (P<0.05), we
used GRB ANOVA to test main effect hypotheses for
each dependent variable (Steel and Torrie
1980:197). We tested univariate assumptions of
experimental error normality and homoscedasticity
using Shapiro-Wilk and Levene’s tests, respectively
(SAS Institute 1987:119, Milliken and Johnson
1992:22). When necessary, we transformed data
with natural logs to meet assumptions of ANOVA
(Steel and Torrie 1980:235). We included a treat-
ment-by-impoundment interaction term in the
ANOVA model to test for nonadditivity of fixed
treatment and random block effects. Data were
analyzed by impoundment and simple main effect
hyvpotheses tested if an interaction (P<0.05) was

detected (Cochran 1947). We used Ryan's-F step-
wise multiple mean comparison test to compare
means when GRB ANOVA was significant (P<0.05,
Day and Quinn 1989). Comparison-wise error rate
(CER) was reported for multiple comparisons to
denote significance level (o) at which null hypothe-
ses were tested; SAS does not provide exact P-val-
ues for Ryan's-F or -Q test (SAS Institute 1987:240).

Results

Agquatic invertebrates

Winter 1992-93 responses. Familial diversity
(MANOVA £=3.2; 12, 69 df; P=0.001) and dry mass
(MANOVA F=2.89; 12, 69 df; P=0.003) of aquatic
invertebrates differed among treatments. Dif-
ferences in diversity also were detected among
treatments in ANOVA (F=34.38; 3, 24 df; P<0.001;
Table 1). Diversity was greatest in control plots and
greater in mowed than in disked and tilled plots
(CER=0.01). Diversity did not differ between
disked and tilled plots.

Invertebrate dry mass also differed among treat-
ments in ANOVA (F=10.07; 3, 24 df; P<0.001;Table
1). Invertebrate mass was greatest in mowed and
control plots (CER=0.025); however, it did not dif-
fer between mowed and control or between disked
and tilled plots.

Winter 1993-94 responses. Invertebrate familial
diversity differed among treatments in MANOVA
(F=3.01; 12, 69 df; P=0.002) and ANOVA (F=04.92;
3,24 df; P<0.001;Table 1). Diversity was greatest in
control plots (CER=0.01). Diversity was greater in
mowed and disked plots than in tilled plots
(CER=0.01); however, mowed and disked plots did
not differ.



Table 2. Dry seed mass, plant species diversity, and dry above-ground standing crop of moist-soil plants following autumn tilling,
disking, mowing, and no treatment (control) in impoundments (IMP) 2 and 8, and 5a and 7, 1993 and 1994, Noxubee National
Wildlife Refuge, Mississippi.

Till Disk Mow Control

Variable Year 2 CLab < Cl % CL % cL
Seed mass 1993  18.7A¢ 15.7-21.6 145AB  11.7-17.3 10.88C  8.3-13.3 8.6C  6.1-11.1
(g/0.5-m?) 1994  BOSA  57.3-63.7 256B 224288 28.3B 25.3-31.3 10.6C  7.6-13.6
Diversityd 1993  0.49A  0.06-0.91 0.29AB  0.11-0.47 0.22AB 0.04-0.40  0.04B 0.004-0.07
IMP® 53 1994 1284  1.03-1.52 0.60B  0.47-0.74 0.57B 0.17-0.97 0.70B  0.40-1.00
IMP 7 1994  0.95A  0.58-1.32 0.83A  (.75-0.92 0.68AB  0.33-1.03 0388  0.12-0.63
Standing crop
(g/0.5-m?) 1993 424.6A 262.4-586.7 376.0A 128.6-504.7 292.9A 256.8-329.1 333.6A 219.0-448.2
IMP 5a 1994 308.8A 305.5-312.1  2682A 264.5-2719 2767A 273.3-280.0 259.2A 255.5-263.0
IMP 7 1994 388.9A 285.9-442.0 607.7B 380.7-834.7 703.1B 544.3-861.9 63038 440,0-820.3

2 n=8, 100-m? plots for all treatments and both years, except n=7 for disked and tilled plots in 1993 and n=4 when data are

presented by IMP.

b CLs for seed mass and standing crop in IMP 5a were back-transformed from natural log values, but raw data were used to com-
pute Cls in 1993 and 1994 in IMP 7. CLs for species diversity were computed using Lyons' (1981) formula in both years.
¢ Means within rows with the same letter do not differ (P > 0.05) by Ryan's-F multiple comparison test (SAS Institute 1987:241).

d Shannon-Weaver diversity values were calculated using plant biomass instead of relative abundance (Lyons 1981).
e Diversity and standing crop analyzed separately by IMP because of a treatment-by-IMP interaction (P < 0.01).

There was a treatment-by-impoundment interac-
tion for invertebrate dry mass (MANOVA F=3.59:
12, 69 df; P=0.001); therefore, data were analyzed
by impoundment. Differences in invertebrate mass
existed among treatments within impoundment Sa
(ANOVA F=5.9; 3. 12 df; P=0.01), but not within
impoundment 7 (ANOVA F=1.65: 3, 12 df P=0.23;
Table 1). Invertebrate mass in impoundment Sa
was greater in tilled than in mowed and control
plots (CER=0.025). We detected no other differ-
ences within impoundment 5a.

Vegetation

Autumn 1993 responses. Although the P-B test
statistic was not significant (MANOVA F=1.8; 9, 66;
£=0.085), 3 other MANOVA test statistics (i.c..
Wilk’s A, Hotelling’s 7, Roy’s Root) revealed differ-
ences  among treatments  (0.001<P<0.048).
Therefore, we proceeded with univariate analyses
of dependent variables.

We detected differences in seed mass among
treatments (ANOVA F=11.01; 3, 22 df: P<0.001:
Table 2). Seed mass was greater in tilled plots than
in mowed and control plots (CER=0.008), but it did
not differ between tilled and disked plots.
Additionally, disked plots vielded greater seed mass
than control plots (CER=0.008). There were no dif-
ferences in seed mass between disked and mowed
plots or between mowed and control plots.

Plant species diversity differed among treatments
(ANOVA F=5.12; 3, 22 df: P=0.008; Table 2).
Diversity was greater in tilled than in control plots
(CER=0.025), but there were no differences among
other treatment comparisons. Above-ground stand-
ing crop did not differ among treatments (ANOVA
F=0.275:3, 22 df; P=0.275; Table 2).

Autumn 1994 responses. Dry seed mass, plant
species diversity, and above-ground standing crop
differed among treatments (MANOVA F=3.27:9, 72
df; P=0.002); therefore, we performed univariate
analyses for cach dependent variable.

We detected differences in seed mass among
treatments (ANOVA F=11.56; 3, 24 df: P<0.001:
Table 2). Seed mass was greatest in tilled plots
(CER=0.008). Seed mass was greater in disked and
mowed plots than in control plots (CER=0.008).
but it did not differ between disked and mowed
plots.

We analyzed plant species diversity by impound-
ment because of an interaction between impound-
ment and treatment effects (ANOVA F=4.69: 3. 24
df; P=0.011). Species diversity differed among
treatments (ANOVA F=13.44; 3, 12 df: P=0.001 and
ANOVA F=7.54: 3, 12 df; P=0.004 for impound-
ments 5a and 7, respectively; Table 2). Diversity in
impoundment 5a was greatest in tilled plots
(CER=0.025), but similar among disked, mowed.
and control plots. Diversity in impoundment 7 was



greater in tilled and disked plots than in control
plots (CER=0.025), but no other differences were
detected.

Above-ground standing crop also was analyzed
by impoundment because of an interaction
between impoundment and treatment effects
(ANOVA F=4.69; 3, 24 df; P=0.011). Standing crop
differed among treatments in impoundment 7
(ANOVA F=0.26; 3, 12 df; P=0.008). In this
impoundment, standing crop was greater in disked,
mowed, and control plots than in tilled plots
(CER=0.025). We detected no differences (ANOVA
F=0.45; 3, 12 df: P=0.719) in standing crop in
impoundment Sa (Table 2).

Discussion

Agquatic invertebrates

Mowed and conrtrol plots generally produced
greater mass and diversity of aquatic invertebrates
in winter 1992-93 and both winters, respectively,
compared with tilled and disked plots. Increased
invertebrate diversity and mass in control and
mowed plots may have been partly related to abun-
dant detritus in these plots (Kaminski and Prince
1981). Detritus is an important component of most
aquatic food chains because associated microor-
ganisms are important foods for macroinverte-
brates (Murkin 1989). Thercfore, food-chain
breadth and complexity can increase with quanti-
ties of detritus and coexisting plant and animal
organisms (Murkin 1989). Additionally, aquatic
invertebrate communities likely were more diverse
in mowed and control plots than in disked and
tilled areas because detritus may have enhanced
habitat structural complexity, which can increase
niche dimensionality and resource partitioning
(Pianka 1994:283, 388, 393),

In impoundment Sa during winter 1993-94,
aquatic invertebrate mass was greatest in tilled
plots. Elevated invertebrate mass in tilled plots
resulted from increased occurrence and biomass of
crawfish (Procambarus spp.), which were com-
paratively larger (in size) than other invertebrates
cncountered in this study. Crawfish production
may have been enhanced because tilling loosened
soil and possibly increased soil acration, which may
have facilitated burrowing, respiration, and foraging
by crawfish (LaCaze 1981, Nassar et al. 1991).
Additionally, tilling mulched vegetation, mechani-
cally converting coarse-particulate-organic matter
(CPOM) to fine-particulate-organic matter (FPOM).

Crawfish seem to prefer FPOM over CPOM because
it is easier to ingest and digest (Benke et al. 1988).
Finally, detrital and other habitat conditions in tilled
plots may have increased prey (e.g., metazoans) for
crawfish (Momot 1995).

Vegetation

Tilling generally produced greatest seed mass
and species diversity of moist-soil plants. Seed mass
was greatest in tilled plots because tilling increased
occurrence of annual grasses, which produced
more seeds than perennials (Gray 1995:116-117).
Tilling likely increased occurrence of grasses and
plant species diversity because it scarified soil and
its mixing action may have elevated seeds to upper
soil horizons (Kelley 1986:40-41, Kirkman and
Sharitz 1994), where increased light, soil tempera-
ture, moisture, and nutrient availability may have
stimulated germination and enhanced photosyn-
thesis (van der Valk and Davis 1978, Galinato and
van der Valk 1986). Furthermore, tilling may have
reduced litter by incorporating it into the substrate.
Litter can inhibit seed germination and seedling
growth by reducing light penetration to the sub-
strate and acting as a physical barrier to seedlings
(Dietert and Shontz 1978, Smith 1983, van der Valk
1986). Also, litter can be allelopathic and reduce
species diversity by inhibiting germination and
growth of other plants (Bonasera et al. 1979, van
der Valk and Davis 1980).

Above-ground standing crops generally did not
differ among treatments. Lack of differences may
have been related to Type II error; coefficients of
variation for non-significant ANOVA models ranged
from 22 to 23% and post hoc power (1) for these
models was 0.20 at ©=0.05. Nevertheless, tilling
produced the greatest mean above-ground standing
crop in 1993 and in impoundment 5a in 1994, Net-
primary production in tilled plots may have been
enhanced because tilling reduced above-ground lit-
ter and its mulching and blending action may have
accelerated litter decomposition and nutrient
assimilation by plants (van der Valk 1986, Neely and
Baker 1989).

In impoundment 7 in 1994, above-ground stand-
ing crop in tilled plots was lower than all other
treatments. This response may have been influ-
enced partly by hydrology. Tilled plots happened to
be randomly located near a borrow ditch within
impoundment 7. Plants within these plots experi-
enced deeper water during rainfall and irrigation
events than plants in plots farther from the ditch.



Seedlings in tilled plots probably became sub-
mersed >1 time, which may have reduced plant
growth and standing crop (Kozlowski 1976,
Jackson and Drew 1984, Kozlowski 1984).

Management and
research implications

Natural and artificial manipulations of wetlands
are useful to revert plant succession to earlier seral
stages (Weller 1981:74-79), reduce dense emergent
vegetation to increase its interspersion with water
(Kaminski and Prince 1981), and control nuisance
vegetation (Baldassarre and Bolen 1994:494-503).
Typically, manipulations are performed in spring or
summer (Fredrickson and Taylor 1982). However, it
may be necessary in some regions to perform
manipulations in early autumn because of lingering
wet conditions or long (continuous) growing sea-
sons (Gordon et al. 1989, Heitmeyer et al. 1989).
Manipulations also may be performed twice annu-
ally, once in spring to set back succession
(Fredrickson and Taylor 1982) and again in autumn
to increase interspersion of vegetation and water
after flooding (Heitmeyer et al. 1989). Applying
management practices twice/year is expensive;
therefore, a more economical approach may be
autumn manipulations that could revert succession
and stimulate production of desirable moist-soil
vegetation during the subsequent growing sea-
son(s).

Autumn tilling generally produced greatest seed
mass, plant species diversity, above-ground standing
crop, and occurrence of grass species during the
subsequent growing season (Gray 1995:116-117).
Therefore, tilling was most effective in converting
monotypic or low-diversity stands of perennial or
late successional herbaceous vegetation to more
diverse plant assemblages. Increased production of
seed-bearing grasses following tilling likely would
increase foraging carrying capacity of moist-soil
habitat for waterfowl (Reinecke et al. 1989).
However, sometimes tilling may produce hemp ses-
bania (Sesbania exaitata, Gray 1995:116-117),
which is undesirable if dense and expansive stands
develop. Nevertheless, summer irrigation can deter
establishment of sesbania (Fredrickson and Taylor
1982). Additionally, mowing and appropriate herbi-
cidal treatment of sesbania before inflorescences
form can stimulate growth of grasses and sedges
underneath the sesbania canopy (R. M. Kaminski,
personal observation).

Tilling tended to reduce invertebrate diversity
and mass, as would be expected due to temporary
reduction in above-ground detritus during the first
winter after treatment. Although we did not detect
statistical differences in above-ground standing
crop of moist-soil plants among treatments, tilling
generally produced the greatest mean standing
crop during the subsequent growing season.
Therefore, we speculate that any reduction in inver-
tebrate mass or diversity in tilled plots would be
short-lived and perhaps rejuvenated during the sec-
ond winter after treatment because of increased
quantities of detritus available for invertebrates.
Moreover. waterbirds can obtain invertebrates in
adjacent, unmanipulated habitat during the first
winter after treatment, assuming entire impound-
ments are not manipulated.

We suggest that autumn tilling may be beneficial
if plant communities contain later successional
indicator species (e.g., swamp smartweed, rushes
uncus spp.], aster [Aster spp.]., vines, scrub-shrub
wetland). Tilling can set back succession and
enhance plant diversity and productivity during the
next growing season(s) while increasing vegetation
interspersion with water following flooding. Tilling
can be accomplished using a tractor-drawn
rototiller, but this technique is recommended only
for small areas. Alternatively, disking likely will cre-
ate plant and invertebrate responses similar to
those achieved with tilling, and disking is more
practical for large-scale management. Disking gen-
crally produced the second greatest response in
seed mass, plant diversity, and occurrence of grass-
es. Mowing before tilling or disking may be neces-
sary to facilitate soil scarification. Finally, autumn
mowing may be most useful when succession does
not need to be reverted and the plant community
contains robust annual grasses or sedges that do
not topple naturally after flooding. Mowing can
create open-water areas for waterbirds while main-
taining aquatic invertebrate production and diversity.

Vegetation manipulations may be performed in
patches or sinuous strips. A 50:50 ratio of emergent
vegetation and open water (i.¢., hemi-marsh condi-
tion) after flooding may be desirable (Weller 1981,
Kaminski and Prince 1981, Murkin et al. 1982,
Prather et al. 1994, Murkin et al. 1997). Under pre-
vious federal regulations, manipulations of natural
vegetation could have been interpreted as “baiting”
(United States Fish and Wildlife Service [USFWS$]
1994:50 CFR 20.21, Elkins 1996, Manning et al.
1996). However, the USFWS has amended the bait-



ing regulations, and any migratory gamebird may
now be hunted over manipulated natural vegeta-
tion or planted millet that grows on its own in sub-
scquent years (i.c., naturalized) during legal hunt-
ing seasons (Federal Register 1999:29801).
Nevertheless, we stronglv recommend that wetland
managers and hunters carefully study the revised
migratory bird hunting regulations regarding bait-
ing and baited areas (Federal Register 1999),

Our data on seed and invertebrate masses by
habitat treatment are unique and may be useful to
estimate foraging carrying capacity of moist-soil
habitats (Reinecke et al. 1989, Reinecke and Loesch
1996). However, our results pertain only to
Noxubee National Wildlife Refuge, Mississippi; thus,
geographical replication of our study is advised.
Coefficients of variation derived from our study can
be used to design future experiments. We suggest
measuring edaphic, hydrologic, and ambient condi-
tions as covariates to more accurately interpret
plant and invertebrate responses to habitat
treatments and local environmental factors.
Observations of treated plots following our study
suggest that autumn tilling and disking produced
desirable plant responses for 2 Srowing seasons
after treatment. However, a study examining post-
treatment responses for 2-3 consecutive growing
seasons is needed to determine frequency of
manipulations necessary to sustain plant and inver-
tebrate production and diversity. Effects of autumn
and spring prescribed burns on aquatic inverte-
brate and plant responses in moist-soil habitats also
should be examined, as well as the applicability of
moist-soil habitat management in northern-prairie
and tropical wetlands.
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