WETLAND CONDITION ASSESSMENT: DEVELOPING RAPID PROCEDURES

W.B. Sutton Advanced Wetlands Ecology, WFS 536 09/08/2011

Outline

- 1. Understand advantages and limitations of rapid bioassessment approaches
- 2. Delineate and assign reference conditions based on study objectives
- 3. Understand how to calibrate and evaluate results from rapid assessments

Biological Monitoring

- What is the basis of biological monitoring
 Detect positive and negative trends
- · Can be difficult to know the nature of some trends

Biological or Condition Assessment Techniques

- A general class of monitoring techniques that can be used to evaluate the ecological condition of a particular site.
- Intensive and non-intensive approaches (Index of Biological Integrity, Rapid Approaches, Basic Checklists)
- Generally a final assessment approach will involve multiple assessment methods

Bioassessment Planning

- 1. Clearly establish monitoring objectives and identify appropriate indicators
- 2. Establish gradient
- 3. Define overall scale
- 4. Designate reference conditions (wetland types)
- 5. Determine appropriate level of data resolution
- 6. Develop and calibrate rapid assessments tools

Wetland Condition Indicators

- · Habitat structure, diversity, complexity
- Species complexity
- Hydrology or geomorphology
- · Biogeochemistry or water quality
- Landscape context
 Connectivity
 Buffers

E. Stein, pers. comm. (2011)

Condition Gradient

Gradient can represent disturbance, forest age, etc. - GIS, used to determine disturbance

Varies greatly on objectives

· Should encompass all stages of gradient

· Increase strength of overall condition assessment

Assessment Scale

- · Determined by assessment objectives
 - Single wetland type; multiple types
 - Probabilistic sampling design
 - Incorporate regional and other stratifications
- Greatly impacts study design
 - (Watershed, state, geographic province, national)
- · As scale increases, study design gets extremely complex

Reference Sites

- What do they represent?True pristine condition
 - Best relative condition
 - Depends highly upon objectives

General bioassessment approaches

Level 1: Landscape Assessments (e.g., remotely-sensed data) - No field component

- Calibration necessary

Level 2: Rapid Field Methods (e.g., rapid assessments) - Field component - Calibration necessary

Level 3: Intensive Field Methods (e.g., IBI and HGM approach) - Field Component - Used to Calibrate Levels 1 and 2

* * and the state

8

Index of Biological Integrity

Organismal based bio-assessment
 Species richness

- Various measures of species composition
- Stress is integrated within the assessment
 but may be difficult to identify source of stress
- · Detailed surveys (multiple visits) are necessary (detection)
- · Multiple metrics can be combined to produce final IBI

IBI calculation

Wetlands are classified into category classes (BPJ)
 Cluster analysis

Cutoff values are assigned (i.e., 1 – 3)
 lower values indicate lower condition

B 30 0 10 20 30 40 50 Impervious area (%)

- Scores are summed to create overall site score

Hots: D. Osborne, W. Sutton, E. Stel

Hydrogeomorphic Approach

- Functional-based assessment
 Functions are derived via multiple indicators
- Distinct Classification
- Functions difficult to formulate
 HGM manuals per region

 Scores easily determined once function relationships are identified.

What are Rapid Approaches?

- Abbreviated condition assessments
 Generally < 0.5 day survey time
 - Semi-quantitative; categorical data
- · Overall score obtained by summing individual categories
- Ecosystem functions are contained within each assessment category

Rapid Approaches

- · Level 2 rapid approaches (semi-quantitative)
 - Ohio Rapid Assessment Method
 - California Rapid Assessment Method
- Series of rapid questions drive the assessment (vary from presence/absence to estimation covariates)
- · Simplified Rapid Assessment Technique (i.e., DERAP)
 - Stressors are noted during survey
 - Plots lose points as stressors increase
- · Stressors can be weighted depending on objectives

Remotely-Sensed Rapid Approaches

- Generally known as synoptic approaches
- No field component required
- Landuse data
 - Buffer hits
- Must also be calibrated using more detailed approach

Metric	Title	submetric	submetric maximum	metric maximum	% total score each metric	
1	Wetland Size	None	6	6	0%	
2	Upland buffers and surrounding land use	2a Average buffer width	7	14	14%	
		2b Surrounding Land Use	7			
3	Hydrology	3a Sources of Water	11	30	30%	
		3b Connectivity	3			
		3c Maximum water depth	3			
		3d Duration inundation or saturation	4			
		3e Modifications to natural hydrologic regime	12			
4	Habitat alteration and development	4a Substrate Disturbance	4	20	20%	
		4b Habitat development	7			
		4c Habitat alteration	9			
5	Special Wetland Communities	None	10+/10-	10	10%	
6	Vegetation, Interspersion, Microtopography	Sa Wetland vegetation communities	18	20	20%	
		6b Horizontal community interspersion	5			Ohio Rapio
		Sc Presence of Table 1 Invasives	-5			Method Mack (200
		6d Microtopography	12			

Model Calibration (Continued)

- · Run multiple regression iterations (stressor combinations)
- Model selection techniques (Akaike's Information Criterion) $\,\circ\,$ AIC = 2 In $L(\theta)$ * 2K
 - \circ Evaluate fit of each model (Akaike's weights [ω_i])
 - Model averaging for highest supported models
 - $\theta = \Sigma \omega_i \theta_i$; ω_i = weight for particular model
 - θ_i = Regression coefficient for parameter
- Use model regression coefficients as weights to adjust rapid model parameters

Model Evaluation and Calibration

Necessary and essential steps
 Multiple version of rapid assessments

- Rapid assessment methods are not stand-alone
 Must be paired with a detailed level 3 approach
- Wetland ecosystems are dynamic environments
 As the ecosystems change, so should your models

Model Validation

- Overall model accuracy...
 - Signal to noise ratio?
 - Does evaluation assign appropriate scores?
- · Can method cover the range of disturbance?
- · How redundant are the components?
- · How reproducible are the results?
 - Can different evaluators arrive at the same result?
 - Variation associated with observers...

Points for Consideration

- Multiple methods are often necessary for developing a rapid assessment approach
- Significant effort should be allocated during the planning process
 - Well-established and distinguishable gradient
 - Scale
 - Reference Conditions
 - Stratifications (region, wetland type)

Points for Consideration

- A working feedback loop should be established for model evaluation and validation
 - Model re-assessment should occur regularly
 - Rapid assessments useful, but need constant evaluation
- · Clear understanding of monitoring objectives

· Questions drive assessments!

"An approximate answer to the right question is worth a great deal more than a precise answer to the wrong question." - John Tukey

