

Lecture Structure

I. North American Waterfowl Management Plan
II. Duck-use Days
III. Estimating Food Resources
IV. Research Needs

Flyways and Waterfowl Trends

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Waterfowl Foraging Carrying Capacity

\qquad
Duck-use Days
(Reinecke et al. 1989)

> The number of waterfowl that can be sustained in a given area for a given amount of time.
\qquad

Carrying Capacity =

$\mathrm{DUD}_{\text {cropland }}+$ DUD $_{\text {moist-soil wetlands }}+\mathrm{DUD}_{\text {hardwood bottomlands }}$

1 DUD = quantity of food necessary to feed 1 duck for 1 day
\qquad
\qquad
\qquad
\qquad

Why Estimate Duck-use days?

Annual Duck-use day Estimates

Quantifying Available Food

3 Methods:

> Aquatic Invertebrates and Seeds

1) "Constants"

An estimate of mass from previous direct Most sampling or published yields (i.e., crops). Common
2) Direct Estimate
-An estimate of mass from current direct sampling in your wetland or ag areas.
3) Prediction Models

- An estimate of mass from current indirect sampling in your wetland or ag areas.

Commonly Used "Constants"			
Seed:			TM
Reinecke et al. 1989		kg/ha	kcal/g ${ }^{1}$
Croplands		140-223**	3.34
-Grain Sorghum: Moist-soil Wetlands		148-436	3.50
$\frac{\text { All Plant Species Combined }}{}$ (Senescence)		$\begin{array}{\|c\|} \hline 450 \\ (100-600) \end{array}$	2.5
Hardwood Bottomlands	-20\%:	18	3.5
Acorrss: \% Basal Area of Red Oaks	$\bullet 40 \%$:	36	3.5
Aquatic Invertebrates:	- Crop	0	-
All Species Combined	-MS	15 (1-31)	3.5
Arner et al. 1974; Wehrle et al. 1995	$\cdot \mathrm{HBL}$	10	3.5
Assumes no deterioration and bird uniformity.			

Food Available in Rice Fields

Manley et al. 2004, Stafford et al. :in review
\qquad

71\%, 79-99\% Decrease in Seed Availability \qquad

271 kg/ha Post Harvest
$78 \mathrm{~kg} / \mathrm{ha}$ Late Autumn (Near $\mathbf{5 0} \mathbf{~ k g} / \mathrm{ha}$ Theoretical Threshold)
Less Food (DUD) Available!!

WHY?

\qquad
\qquad
\qquad
\qquad

Using Constants for Food Resources

Advantages:

- Easy to Use, No Fieldwork, Inexpensive (estimate area only)

Disadvantages: •Refuge or Unit Estimates are Merely a Consequence of Area. Ignores habitat quality and management!
-MAV Estimates from the 80 s may not be reliable.
$>$ New evidence suggests they may overestimate DUD.
-Seed and invertebrate resources are not constant!
For seeds, what there is at senescence, may not be what is available to birds when they arrive.
For inverts, peak invertebrate production may not correspond to bird use (late winter, March).

Direct Estimation of Food Resources

Direct Estimation of Food Resources

Direct Estimation of Seed Resources
A New Technique: The "Seed-vac"
Penny et al. :in review
88\% Recovery Rate
Correction Factor = 1.14

Direct Estimation of Food Resources

Advantages: -The most accurate method for estimating site-specific food resources.
-Wetland-specific estimates.
Disadvantages:
-Time Consuming
-Specialized Equipment Required
-Expensive

Most wetland managers do NOT have the resources to directly estimate seed and invertebrate production annually (or several times during flooding).

Estimating Food Resources Using Prediction Models

(Laubhan \& Fredrickson 1992; Gray et al. 1999a,b; Sherfy \& Kirkpatrick 1999)
Seed Yield $=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}$ (Plant Measurements, Dots)
Invertebrate Biomass $=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}$ (Water Quality, Depth)

Methods: Plant Morphological Study

5 species: Echinochloa crusgalli, Cyperus erythrorhizos, Polygonum hydropiperoides, Panicum dichotomiflorum, Rynchospora globularis n = 60 plants/species/year, 1993 and 1994

L \& F (1992)

-Plant Height
-Inflorescence Length
-Infl. Base Diameter
-Infl. Volume
-\# of Inflorescences

\qquad

\qquad
\qquad
\qquad

Methods: Aquatic Invertebrate Study
Invertebrate Collection and Processing

\qquad
\qquad
\qquad
\qquad

Methods: Aquatic Invertebrate Study
Predictor Variables
Water Variables:

-Conductivity -Dissolved Oxygen
-Temperature -pH
-Water Depth
Induced Variables: •Inundation duration
-Treatment
(managed, unmanaged)

\qquad
\qquad
\qquad
\qquad
\qquad
(tar \qquad

Seed Prediction Results: 4 Models

	Our Data L \& F	Best Model	L \& F (1992)	Dot Model	
\mathbf{R}^{2} adjusted	$0.68-0.92$	$0.78-0.97$	$0.79-0.96$	$0.92-0.97$	
$\mathbf{R}^{2}{ }_{\text {predicted }}$	$0.23-0.88$	$0.31-0.97$	NAV	$0.91-0.96$	
MSE	$0.002-0.39$	$0.001-0.18$	NAV	$0.001-0.009$	
C	$48.2-495.0$	$3.9-6.6$	NAV	NAP	
VIF	$1.1-34.8$	$3.9-12.0$	NAV	NAP	
		NAV = Not Available, NAP = Not Applicable			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Invertebrate Prediction Results

 (Single Variable Models)Increasing p, Increased $\mathrm{R}^{2} \leq \mathbf{0 . 0 3} \quad$ Increasing \boldsymbol{p}, Increased VIF ≥ 10 \qquad
\qquad

Conductivity	0.604	0.582	333.14
Treatment	0.587	0.562	347.48
pH	0.581	0.564	352.83
DO	0.494	0.483	426.40
Depth	0.469	0.451	449.09
Time	0.396	0.379	508.49
Temperature	0.371	0.365	529.34

\qquad
\qquad
\qquad
\qquad

Summary of Results

Simple linear regression models can explain as much variation in seed yield and aquatic invertbrate biomass and predict as well or better than multiple regression models.

Estimating Available Food via Equations
Steps: 1) Randomly establish sampling plots.

$\underline{n}=30$	2) Clip 1 randomly selected plant per spp.

1-m ${ }^{2}$ 3) Count plant density per spp. per plot.
4) Measure water quality or depth.
5) Measure plant morphology or count number of dots covered by seed.
6) Estimate dry seed/plant \& invertebrate mass $/ \mathbf{m}^{2}$ using prediction equations. \qquad
7) Multiply estimate of seed mass/plant/spp.
by $\overline{\times}$ plant density for each species.
8) Convert estimates to $\mathrm{kg} / \mathrm{ha} \& \quad \sum_{\text {species }}^{\text {kg } / \mathrm{ha}} *$

Estimating Food Resources with Models

Advantages:

-Wetland-specific estimates.
-Faster, "easier", and less expensive than direct sampling.

- Accurate estimate of food production. (BUT, maybe only where model was developed)

Disadvantages:

Should use suite of equations developed closest to your site. (MS, MO, VA)
-Models tend to be manager unfriendly.
>Mathematical and botanical jargon.
$>$ Variables can be tedious to measure.
-Spatial dependency.
$>$ Can give inaccurate estimates outside of region (or management area) where model was developed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Computing Duck-use Days

Steps: 1) Estimate food resources per ha.

2) Multiply \#1 by the TME of food resource.
\longrightarrow Use Published or Own Estimate(s)
3) Divided the product of \#1 and \#2 by the daily energy requirement of waterfowl.
— Use Published or Own Estimate(s)
4) Compute DUD by multiplying \#3 by area (ha) of wetland and $\sum_{\text {Habiat }} \sum_{\text {Food }}$ DuD
5) Express DUD as a total or daily estimate (i.e., divide by hydroperiod).
"Foraging Efficiency" Correction Factor for \#1: $\mathbf{- 5 0} \mathbf{~ k g / h a ~}$

Computing Duck Use-Days

Wetland	Area	Seed Yield	MTE	DER	DUD
Mandri	138 ha	$150 \frac{\mathrm{~kg}}{\mathrm{ha}}$	$500 \frac{\mathrm{kcal}}{\mathrm{~kg}}$	$292 \frac{\mathrm{kcal}}{\mathrm{day}}$	178K
Santa Teresa	73 ha	$600 \frac{\mathrm{~kg}}{\mathrm{ha}}$	$2500 \frac{\mathrm{kcal}}{\mathrm{~kg}}$	$292 \frac{\mathrm{kcal}}{\mathrm{day}}$	377K
$1 / 2$ Million Duck Use-Days			Ducks/Day		

Summary of Problems with
 Current DUD Estimates

1) "Constants"
$>$ May Overestimate.
(Kaminski \& Reineck Recent Research)
$>$ Not site-specific.
>Cannot Evaluate Management.
2) Prediction Models
$>$ Not Manager Friendly: confusing, tedious.
>Should Not Be Used Across Regions.
Direct Estimation
$>$ Costs too much.

Some Ideas for Future Research
Prediction Models
Seed-head Area Meter:
$0.067 \mathrm{~cm}^{2}-$? Resolution

Scanner: \$8,200
Very fast and accurate

Scanner: $\$ 300$
Software: $\mathbf{\$ 1 5 0 0}$
+
Gray et al.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15 minutes

