

Lecture Structure

- I. North American Waterfowl Management Plan
- II. Duck-use Days
- **III. Estimating Food Resources**
- **IV. Research Needs**

Waterfowl Foraging Carrying Capacity

(Reinecke et al. 1989) Duck-use Days	
The number of waterfowl that can be sustained in a given area for a given amount of time.	
Carrying Capacity = DUD _{cropland} + DUD _{moist-soil wetlands} + DUD _{hardwood bottomlands}	
1 DUD = quantity of food necessary to feed 1 duck for 1 day	

Quantify	ing Du	ıck Use-I	Days
100	Prince	1979	
Reinecke et al. 1989			Reinecke and Loesch 1996
DUD – Food Availa	ble (g [dry	/]) x TME (kc	al/g [dry])
Daily Energy Requirement (kcal/day)			
Available Food for Water	fowl	TME Constants	DER Constant
 Moist-soil Seeds Aquatic Invertebrates 	Usual but see handout	2.5 kcal/g 3.5 kcal/g	292 kcal/day

Why Estimate Duck-use days?

•To Determine if Sufficient Food Resources Exist on Migrating & Wintering Grounds to Support Continental Waterfowl Populations

o Determi Area Co Contine	ine Refuge or Mana ntributions to Fulfi ntal Goals of <mark>NAW</mark> State & Regional Obj	igement lling MP ectives
Example,	13.3 million DUDs =	(795K)
N NWR)	121,000 ducks f	or 110 days

•To Evaluate Management Practices

	2	
3 Meth	ods:	Aquatic Invertebrates and Seeds
1)	"Constants"	
	•An estimate of mass f sampling or published	from <u>previous direct</u> l yields (i.e., crops).
2)	Direct Estimate	
	•An estimate of mass f sampling in your wetla	from <u>current direct</u> and or ag areas.
3)	Prediction Models	
	•An estimate of mass f sampling in your wetl	from <u>current indirect</u> and or ag areas.

Commonly Used	l "Co	onstants	,99
Seed:			TME
Reinecke et al. 1989		kg/ha	kcal/g ¹
Croplands •Rice:		140-223**	3.34
(Post-harvest) •Grain Sorgh	ium:	148-436	3.50
Moist-soil Wetlands (Senescenc	e)	450	2.5
All Plant Species Combined		(100–600)	
Hardwood Bottomlands •2	:0%:	18	3.5
Acorns: % Basal Area of Red Oaks •4	0%:	36	3.5
Aquetic Invertebrates:	C	0	
Aquatic niver tebrates.	•Crop	0	
All Species Combined	•MIS	15 (1-51)	3.5
Arner et al. 1974; Wehrle et al. 1995	•HBL	10	3.5
¹ Assumes no	deteriora	tion and bird un	iformity.

Using Constants for Food Resources
Advantages: •Easy to Use, No Fieldwork, Inexpensive (estimate area only)
Disadvantages: •Refuge or Unit Estimates are Merely a Consequence of Area.
•MAV Estimates from the 80s may not be reliable.
•Seed and invertebrate resources are <u>not</u> constant! For seeds, what there is at senescence, may not be what is available to birds when they arrive.
For inverts, peak invertebrate production may not correspond to bird use (late winter, March).

Direct Estimation of Food Resources

Advantages:	•The most <u>accurate</u> method for estin site-specific food resources. • <u>Wetland-specific</u> estimates.	nating
Disadvantages:	•Time Consuming •Specialized Equipment Required •Expensive	(intense field and lab work)
Most wetland estimate	managers do <u>NOT</u> have the resources seed and invertebrate production and (or several times during flooding).	s to directly nually

Estimating Food Resources Using Prediction Models

(Laubhan & Fredrickson 1992; Gray et al. 1999a,b; Sherfy & Kirkpatrick 1999) Seed Yield = $\beta_0 + \beta_1$ (Plant Measurements, Dots) Invertebrate Biomass = $\beta_0 + \beta_1$ (Water Quality, Depth)

Methods: Aquatic Invertebrate Study

Predictor Variables

Water Variables:

•Conductivity •Dissolved Oxygen •Temperature •pH •Water Depth

Induced Variables: •Inundation duration •Treatment (managed, unmanaged)

	Our Data L & F	Best Model	L & F (1992)	Dot Model
R ² adjusted	0.68-0.92	0.78-0.97	0.79-0.96	0.92-0.97
R ² predicted	0.23-0.88	0.31-0.97	NAV	0.91-0.96
MSE	0.002-0.39	0.001-0.18	NAV	0.001-0.009
Cp	48.2-495.0	3.9-6.6	NAV	NAP
VIF	1.1-34.8	3.9-12.0	NAV	NAP

Invertebra (Singl	ate Predi <i>le Variable</i>	ction Re Models	esults)	
Increasing <i>p</i> , Increased $R^2 \le 0.03$ Increasing <i>p</i> , Increased VIF ≥ 10				
	R ² adjusted	R ² predicted	MSE	
Conductivity	0.604	0.582	333.14	
Treatment	0.587	0.562	347.48	
pН	0.581	0.564	352.83	
DO	0.494	0.483	426.40	
Depth	0.469	0.451	449.09	
Time	0.396	0.379	508.49	
Temperature	0.371	0.365	529.34	

Estimating Available Food via Equations

Steps:	1)	Randomly establish sampling plots.
<u>n</u> =30	2)	Clip 1 randomly selected plant per spp.
1-m ²	3)	Count plant density per spp. per plot.
	4)	Measure water quality or depth.
	5)	Measure plant morphology <u>or</u> count
		number of dots covered by seed.
	6)	Estimate dry seed/plant & invertebrate
		mass/m ² using prediction equations.
	7)	Multiply estimate of seed mass/plant/spp.
		by $\overline{\mathbf{x}}$ plant density for each species.
	8)	Convert estimates to kg/ha & $\sum_{\text{Species}}^{\text{kg/ha}} *$

Estimating Food Resources with Models

Advantages:	•Wetland-specific estimates. •Faster, "easier", and less expensive than direct sampling. •Accurate estimate of food production. (BUT, maybe only where model was developed)			
Disadvantages: •Models tend to be manager unfriendly.				
	≻Mathematical and botanical jargon.			
Should use suite of	≻Variables can be tedious to measure.			
equations developed closest to your site.	•Spatial dependency.			
(MS, MO, VA)	Can give inaccurate estimates outside of region (or management area) where model was developed.			

Computing Duck-use Days					
<u>Steps</u> :	1)	Estimate food resources per ha.			
	2)	Multiply #1 by the TME of food resource.			
		Use Published or Own Estimate(s)			
	3)	Divided the product of #1 and #2 by the			
		daily energy requirement of waterfowl.			
		→Use Published or Own Estimate(s)			
	4)	Compute DUD by multiplying #3 by			
		area (ha) of wetland and $\sum_{\text{Ublice}} \sum_{\text{Ford}}$			
	5)	Express DUD as a total or daily			
estimate (i.e., divide by hydroperiod).					
"Foraging Efficiency" Correction Factor for #1: -50 kg/ha					

Some Ideas for Future Research Constants						
Constants commonly used for seed (moist-soil, acorns, and agricultural grains) and aquatic invertebrates need to be verified.						
		(only been don	(only been done for rice) Current Estimates			
	1980s Estimates	Current Estima				
Moist-soil:	450 kg/ha	?				
Rice:	140 kg/ha	78 kg/ha	Available for Ducks			
Corn:	325 kg/ha	?	Duchs			
Sorghum:	292 kg/ha	?				
Acorns:	80 kg/ha	?				
Inverts in Mo	ist-soil & Hardwood Botto	nlands (start in we replicate	st Tennessee the through MAV)			

