Implications of Channelization and Sedimentation on Bottomland Hardwood Ecosystems

Hydrology

- Single most important factor in wetland management
- Influence plant structure, composition, invert communities and wildlife

Hydroperiod

- Seasonal pattern of water level in a wetland
- Defines the rise and fall of a wetlands surface and subsurface water levels

Hydroperiod Variability

- General patterns over long-term but highly unpredictable within and among years
- Natural variability is essential to maintain system productivity

Flood Pulse Concept

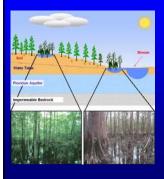
- Lateral connectivity of a river and its floodplain is critical for productivity of river, forests, and its organisms
- Life-cycles of floodplain plants and animals and many floodplain functions (e.g., sediment retention) are linked to flooding patterns

Geomorphology

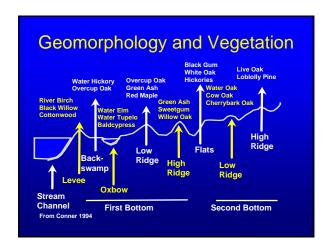
- Floodplains are formed from the erosion and deposition of sediment
- Patterns and rates of erosion and deposition are critical forces affecting wildlife and fish habitat

Sedimentation

 Provides sediment retention, improves water quality, replenishes nutrients, and creates new areas for colonization by wetland plants


Point bar deposition – within stream channel

- creates ridge and swale topography
- temporary storage of sediment


Vertical Accretion – deposition in the floodplain

- results from overbank flooding
- forms the primary floodplain soils
- rates and textures are highly variable

Overbank Sedimentation

- Deposition rates typically > 1 cm/yr
- Most deposition occurs near the stream channel
- Depressional areas can also receive high rates of deposition

Activities Impacting Wetlands

- Dams
- Highways
- Irrigation
- Levees
- Oilfield Canals
- Channelization

Reasons for Channelization • Mainly for agricultural purpose to remove water from land for cultivation

Channelization

- Straightens, shortens, and steepens stream channels
- Increases stream velocity and stream power
- Facilitates transport of sand to the river system
- Impacts hydrology and geomorphology

Hydrologic Impacts

- Alters timing, depth, duration, and frequency of flooding
- Disconnects rivers from the floodplain
- Can cause excessive ponding at confluences

Geomorphic Impacts

Degraded aquatic habitats, reduced flood storage capacity, increased water table, creation of natural levees, excessive sediment deposition, and increased overbank flooding

Hatchie River

- Headwaters are in Upper East Gulf of Mexico Coastal Plain
- Drains into MS River
- Longest unchannelized stretch of river in LMAV

Hatchie River

- Supports 100 species of fish, 250 species of birds, 50 species of mammals, 35 species of mussels, and numerous herps
- Globally rare Hatchie River burrowing crayfish
- TNC "Last Great Place" list

BLH Forests

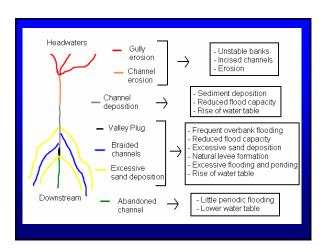
- Structurally diverse
- Highly productive
- Important timber resource and provides important wildlife and fisheries habitat

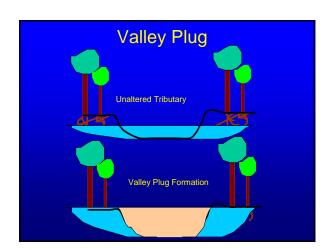
Economic Value

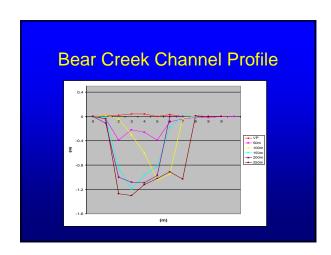
- Over \$3.6 billion generated by timber industry in West TN in 1997
- BLH are an important component of regional and state economy

System Alterations

- Extensive channelization, of over 90% of the tributaries
- Altered hydrology caused rapid geomorphic adjustment


Root of the Problem Geology – Source of the sand Past and Present Land Use – expose the sand





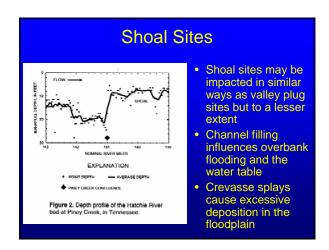
Valley Plugs

- Occur where sediment (sand) laden waters slow in velocity
- Debris jams and intersections of tributaries and rivers are common locations
- Completely plugs the channel
- During subsequent flows, the plug enlarges upstream as additional sand is deposited

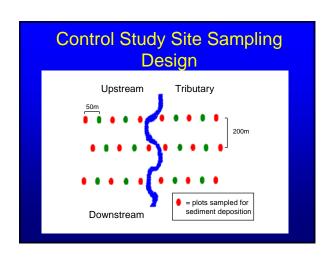
Sanding of Timber

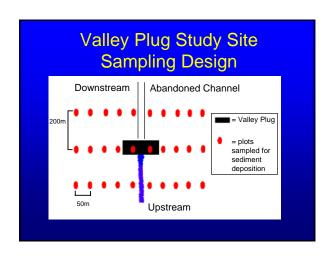
- Kills standing timber
- Alters tree species composition
- Buries productive soils

Ponding of Timber

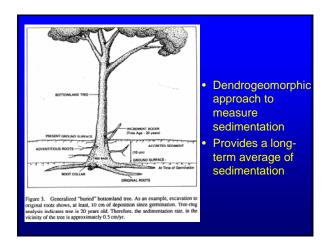


 Increased water tables and accelerated natural levee development encourage permanent ponding of timber

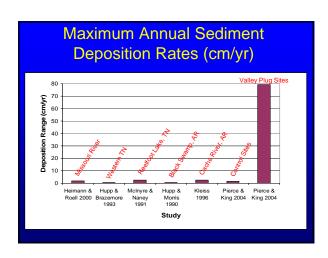

Abandoned Channel

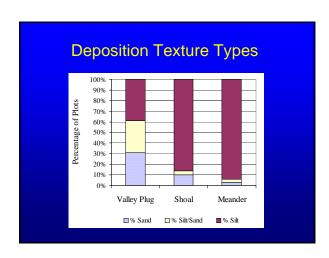


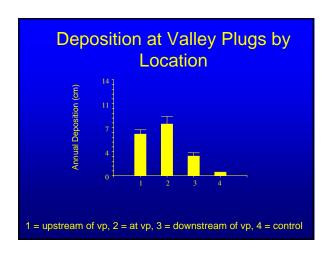
• Reduced flooding and sedimentation leading to a shift in species composition

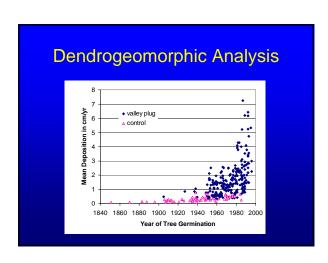


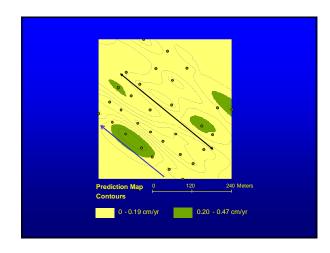


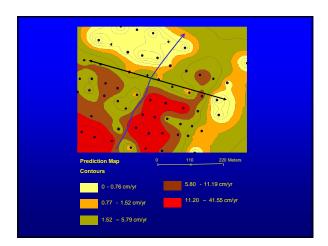


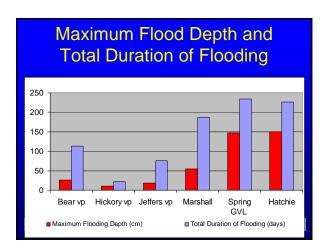


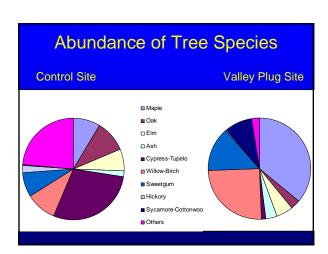











Summary

- Deposition is 10 times greater at valley plug sites than at control and shoal sites
- Significant differences in deposition types among site types
- Valley plugs are progressing upstream, impacting new areas
- Valley plugs change the spatial dynamics of sedimentation

Future Work

- Investigate linkages between excessive sedimentation and changes in surface and subsurface hydrological regimes
- Determine implications of excessive sedimentation, surface and subsurface hydrology on succession of BLH forests



Acknowledgements

 Funding provided by the U.S. Fish and Wildlife Service and the U.S.D.A. – CSREES: Initiative for Future Agriculture and Food Systems. Special Thanks :
Dr. Cliff Hupp
Dr. Tim Diehl
The Nature Conservancy

Field Crew: Justin Nolte, Eric Sawyers, Chuck Yoest, Nick Wirwa, B.J. Wilson, Wes Cochran, Jimmy Fox, Jeff Roberson, and Nick Winstead

