

Effects of Microcystin on Fish

chanisms of Toxicity

- Protein phosphatase inhibition
- Hepatotoxicity

Possible ion regulation interference
Inactivation of Na+/K+ ATPase

urrent Researc

- Focus has been on acute exposures
- Need more info on chronic environmentally relevant exposures
 - reproduction and development

Global Gene Expression

· Microarray

- Measures expression of all genes in a sample.
- Control vs. Treatment
- Up-regulation
- · Down-regulation

· Benefits

Mechanism of Toxicity Biomarker Development

Research Objectives

- Determine a suite of biomarker genes indicative of microcystin exposure in zebrafish.
- Monitor expression of these genes in later experiments designed to link changes in gene expression with higher level effectschronic mortality, reproduction, histological lesions, etc.

Methods

- Zebrafish
 - Model organism
 - Sequenced genome
 - Commercially available arrays

Exposure

- Spawning
- Hatching:
 - 72-h post fertilization
- 50 larvae per beaker
- \cdot 3 replicates per treatment
- 96-h exposure
- Total RNA extraction

Treatments

- Purified Microcystin-LR (MC-LR)
- · Vehicle Control
- 0.05% ETOH
- Lyophilized Microcystis aeruginosa (L!!)
- Negative Control

Jp-Regulation of Vitellogen Genes in LM Treatment		
Gene Title	Fold Change	p-value
Vtg 3	31.2	<0.0000
Vtg 4	44.1	<0,0000
Vtg 2	60.8	<0.0000
Vtg 1,4,6,7	164.5	<0,0000
Vtg 1	190.6	<0,0000

Discussion

Vitellogenin

- Egg yolk precursor protein produced in liver in response to estrogens
- Should only be transcribed in reproductive female fish
- Highly up-regulated in lyophilized Microcystis treatment, but not in purified MC-LR treatment
 - Not a toxin effect

Implications

Microcystis may produce a metabolite that is an estrogen mimic.

- Not previously described in cyanobacteria?
- Disruption of endocrine function in fish living in affected areas?
 - Reproductive impairment
 - · Feminization of male fish

Summary

- Exposure to purified MC-LR and *Microcystis* resulted in differential gene expression in zebrafish larvae.
- Vitellogenin genes were highly up-regulated in *Microcystis* treatment, but not MC-LR.
- Additional data analysis will identify genes differentially expressed in both MC-LR and lyophilized *Microcystis* treatments, and these genes will be used as biomarkers in future experiments.

