Introduction

- Urban location theory
 - Alonso's (1964)
 - Rents diminish outward from the central business district to offset both lower revenue and higher operating costs

- Criticism
 - Assumption that the value of housing attributes remains constant throughout an urban area.

Introduction (Contd.)

- Market segmentation
 - Submarket
- Submarkets in equilibria
 - Minimized local variations in implicit prices of housing attributes by arbitrage
Literature Review

- Straszheim (1974)
 - First theory of distinctive submarkets
 - Market as a set of distinctive submarkets arising from structural and locational attributes

- Dunse and Jones (1998)
 - Submarket caused by preventing the adjustment of supply and demand
 - Least efficient property market

Motivation

- Lack of empirical attempt to test the stability of market equilibrium for housing attributes

Objective

- Empirical test the hypothesis that the market equilibrium for housing attributes are attained within distinctive submarket
- Investigate spatial variability in the values of housing attributes across submarkets
Empirical Model

- **I. Submarket Identification**
 - Two-step clustering

- **II. Stability of market equilibria**
 - Significance test for the spatial variability of parameter estimates of a hedonic housing price model
 - Monte Carlo procedure in a geographically weighted regression (GWR)

Empirical Model (Contd.)

- **I. Submarket Identification**
 - No universally accepted method of identifying the optimal number of housing submarkets
 - Bourassa et al. (1999), Bourassa, Hoesli, and Peng (2003), Goodman and Thibodeau (1998, 2003), Johnson (1982), Michaels and Smith (1990), and Schnare and Struyk (1976)
 - Two-step clustering
 - Without an *a priori* assumption about the initial number of clusters
 - Use continuous and categorical variables
 - Preferred to k-means clustering

Empirical Model (Contd.)

- **Two-step clustering**
 - **First step**
 - Cluster feature tree
 - Level, node
 - Entry: characterized by the mean and variance
 - Construct a likelihood function
 - Optimal number of clusters using Bayesian Information Criterion or AIC
 - **Second step**
 - Re-group by agglomerative hierarchical clustering
 - Structural, neighborhood, distance, and time
Empirical Model (Contd.)

II. Hedonic Model in a GWR framework

II. Hedonic Model in a GWR framework

\[\ln p_i = \sum \beta_i (u_j, v_j) x_{ik} + \epsilon_i \]

- Bandwidth (Window size)
 - 25%, 50%, 75%, and 100% of observations
- Lagrange Multiplier (LM)
 - Test for spatial autocorrelation
- Monte Carlo procedure
 - Test for significance of spatial variability

Study Area and Data

- Knox County
- Data
 - Property parcel records from the Knoxville - Knox County - Knoxville Utilities Board (KUB) Geographic Information System (KGIS, 2006)
 - Data extracted from the 2000 US Census (GeoLytics, 2006)
 - Geographical information from the 2004 Environmental Systems Research Institute Maps and Data (ESRI, 2006)
Empirical Results

- Likelihood-ratio (LR) test
 - Hypothesis that all parameters are equal among the four submarkets
 - Reject (LR=3757, df=120, p<0.001)

Empirical Results (Contd.)

- Spatial autocorrelation (LM)

Empirical Results (Contd.)

- Spatial Heteroscedasticity
Empirical Results (Contd.)

Spatial Variability of Local Estimates

Out of 11 structural variables

100% Bandwidth

Empirical Results (Contd.)

- Spatial Variability
 - Structural variables vs. neighborhood and distance variables
 - Time variables
 - Different degrees of supply flexibility

Conclusion

- Necessary conditions for market equilibria (Evans 1995)
 - Supply flexibility
 - Occupier mobility
Any Question?

Thank you!!