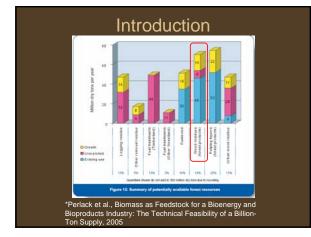

The Effects of Timber as a Biofuel on the Occupancy and Habitat Suitability of the Indiana Bat and the Gray Bat in Tennessee



Introduction

- Biofuel:
 - National Security
 Stimulate Local
 - Economies
 - Reduce Carbon
 Emissions
- Tennessee described as "Saudi Arabia of cellulose"



Introduction

- Biomass Includes
 - Food Crops & Residues
 - Perennials
 - Other Residues
 - Timber Residues

Introduction

- Potential Negative Impacts of Biofuel Production
 - Decreased Site Productivity/Decreased Soil Conservation
 - Increased Carbon Emissions
 - Decreased Biodiversity
 - Reduced Quality of Wildlife Habitat

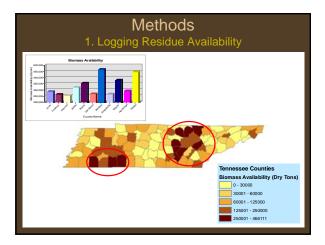
Introduction

- Species of Concern In Tennessee
 - 20 Endangered Mammal Species
 - 4 of These Species
 Federally Listed as
 Endangered Under the
 ESA

 - Carolina Northern Flying Squirrel
 - Virginia Big-Eared Bat (not confirmed in TN)

Purpose

• The goal of my research is to determine how utilizing timber as biofuel will affect the quality of Indiana Bat and Gray Bat habitat in Tennessee.


Objectives

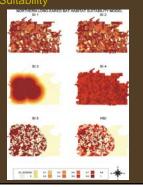
- 1. Determine both current and potential logging residue availability in TN
- 2. Determine suitable habitat for both the Indiana Bat and the Gray Bat
- 3. Determine areas occupied by the Indiana Bat and Gray Bat
- 4. Determine areas of concern by comparing biofuel productivity with key bat habitat

Methods

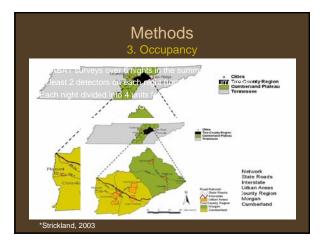
1. Logging Residue Availability

- Utilize FIA data to determine annual logging residue availability and removals in Tennessee, by county
- Multiply annual removals by 65% to determine annual logging residue availability for biofuels (Perlack et al., 2005)
- Locate areas within the state with the highest removals

Methods


2. Habitat Suitability


- Determine most important habitat characteristics for Indiana Bat and Gray Bat
 - Distance from Caves (5 miles max)
 - Distance from Water (2 miles max)
 - Elevation
 - Percent Tree Cover (>30%)
- Determine suitability, on a scale of 0 to 1, for each of these characteristics and create layer in GIS
- Model Habitat Suitability in Tennessee to determine ideal habitat for Indiana Bat and Gray Bat, using GIS


Methods 2. Habitat Suitabilit

- Existing Habitat Suitability Model for Northern Long-Eared Bats in Missouri:
 - Mature forests for roosting/foraging (SI₁)
 - Density of large snags for roosting (Sl₂)

 - Forest gaps (SI₄)
 Interspersion of roost sites and foraging (SI₅) Distance from water (SI₃)

Methods

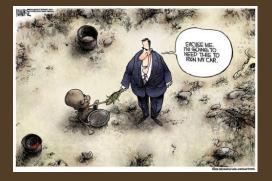
- Conduct Occupancy Model in Program MARK with 25 occurrences, 4 repeats, and the following covariates:
 - Time of night
 - Average temperature
 - Average precipitation
 - Each Habitat Suitability characteristic (from my model and existing models)
 - The overall Habitat Suitability Index

Methods

3. Occupancy

- Determine Occupancy Model with best fit
 Lowest AIC model
- Create new habitat suitability model, utilizing the most significant covariates from the occupancy model

Methods A Areas of Concern


- Compare new Habitat Suitability Model with current model of biofuel production
- Create forecast model of biofuel production and determine how this could affect the habitat suitability of the two species in the future

Acknowledgements

Dr. Donald Hodges Dr. Lisa Muller Dr. Joseph Clark Doug Shipley Andy Hartsell Zhimei Guo

Questions

