

•	Number of studies scrutinized demand for wildlife hunting
	 (Ziemer et al. 1980; Miller and Hay, 1981; Anderson et al., 1985; Brown and Connelly, 1994; Teisl et al., 1999; Mehmood et al., 2003; Sun et al., 2005).
•	Essential to understand what influences hunting demand.
•	Projecting how the future of wildlife hunting will like has not been a focus of previous studies.

Objectives

- To develop an economic demand model for the wildlife
- To determine what affects the demand for wildlife hunting in the southeastern United States
- To project the demand for wildlife hunting in the region for next few decades

Empirical Model

Following Sun et al. (2005); Anderson et al (1985), a log-linear demand model was used

$$\ln Y = \beta_{0} + \sum_{k} \beta_{k} X + \varepsilon$$

Where, In ${\cal Y}$ is a N by 1 vector of the natural logarithm of the number of licenses sold in counties .

X is a N by K matrix of the explanatory variables

 ϵ is N by 1 vector of independent and identically distributed random errors

Empirical Model

- Heteroscedasticity
 - White test of homoscedasticity was rejected (Chi-Square value= 416. 11, df = 169, p < 0.0001)
 - FGLS estimation (Greene, 2002)

$$\hat{\beta} = (X'\hat{\Omega}^{-1}X)^{-1}X\hat{\Omega}^{-1}y$$

where, the term Ω is an N by N diagonal matrix of error term

Multicollinearity

Cut off point (10)

 $VIF_k = 1/(1 - R_k^2)$

1/-	Study Area
	utheastern United States: Hunting is the major consumptive outdoor recreation (Lamar and Donnell, 1987) Fastest growing region in terms of population growth and urbanization (Reynolds, 2001)
0 0 0	alysis units: 1066 counties from 10 states: Alabama Georgia North Carolina South Carolina Tennessee Virginia Kentucky Arkansas Louisiana Texas

Variables	Sources	Variables	Sources	
Dependent				
Resident license sold	State Agencies			
Explanatory				
License fee	USFWS	Population	US Census	
Personnel income	US Census	Commute time	US Census	
Employment (%)	US Census	Public forest (%)	NORSIS	
Low education (%)	US Census	Private forest (%)	NORSIS	
College graduate (%)	US Census	Gun Club dummy	NORSIS	
Age (16-34) %	US Census	Amusement	NORSIS	
Age (35-65) %	US Census			
Single male Parent HH	US Census			
Caucasian (%)	US Census			

ariables Parame		ters	Variables	Parameters	
Intercept	-1.710	***			100
Socioeconomic variab	les	400			1
In(License fee)	-0.204	*	In(Population)	0.516	***
In(Personal income	0.312	***	Commute time	-0.011	***
Employment (%)	-0.014	***	Public forest (%)	0.019	***
Low education (%)	0.012	*	Private forest (%)	0.003	***
College graduate (%)	-0.037	***	Gun Club dummy	0.254	***
Age (16-34) %	-0.004	100	Amusement	0.008	
Age (35-65) %	0.019	**		333	
Single male Parent HH	-0.041	***	Adj. R Square	0.73	
Caucasian (%)	0.013	***	N	1066	

Demand Projection

- Simulate future hunting demand under a number of assumptions about explanatory variables
 - Demographic change
 - Forest land use change
 - Institutional changes
- Estimated regression parameters from the structural model are applied to the projected values of the explanatory variables
- Region's demand projection over five-year intervals from 2000-2030
- Simulation
 - Projected values
 - Interpolation/extrapolation
 - assumptions

Demand Projection

- The region will experience a slight decrease in hunting demand from 2000 to 2030 Demographic change
 - Demand in 2030 would be 5.36 million in the region, which is about 9% less than that of 2000
 - Bowker, English, & Cordell (1999) forecasted national hunting participation to decline by 11% from 1995 to 2050
- Expected decline in hunting demand can be attributed primarily to:
 - Structural change in demographics
 - Decrease in forestland in the area
- A significant change in demographic structures and loss of forest areas particularly those under private ownership
 - Browning

 - AgeingForest land loss

Demand Projection... Alternative Scenarios ??? AIL Increasing rate of population growth Faster rate of Hispanic growth Randwick Tract Increasing urbanization and land use change Decreasing access to forestlands Increase in elderly and young population

Scenarios	2000	2005	2010	2015	2020	2025	2030
Base-line Alternative	5.87	5.77	5.70	5.62	5.53	5.45	5.36
Higher Population Growth	5.87	5.87	5.77	5.70	5.64	5.59	5.56
Incr. Minority Pop. Share	5.87	5.64	5.45	5.28	5.11	4.96	4.81
Faster Forest Loss Rate	5.87	5.73	5.61	5.50	5.39	5.28	5.17
Increased Youth & Elderly	5.87	5.70	5.55	5.41	5.28	5.16	5.03
Baseline Best guess b Higher Popul Population g Incr. Minority White popul	ation Gi growth rate y Poop.	rowth e that is 1.3 Share	3 times the	rate in the			

Increased Youth & Elderly
 Population of age cohort 34 to 65 would grow by half the rate in base case

Faster Forest Loss Rate
Annual forest decline rate of 0.43% (SENRLI, 2006)

Conclusion Sociodemogrpahic data aggregated at county level can be combined with landuse information to explain demand for wildlife hunting. Demand for hunting license in the southeast is likely to decline by 9% through 2030. Most important factors appear to be structural shifts in population, particularly non-whites and an age shift.

Conclusion Demand for hunting is price inelastic among southeastern hunting In increase in price induces a less than proportionate decline in sales and most importantly, an increase in revenue Decreasing license fee will only increase participation by a less than proportional amount Availability of public hunting land has a far greater impact on license sales than private land Agencies may consider programs which increase public hunting land. While the projection gives a general picture for the region, state agencies might find the model useful to project the region specific hunting demand and forecast revenue The model can be extended to understand and project demand for other consumptive outdoor activities such as fishing

