

Introduction

- 4 million miles of roads in USA
- Never more than 22 miles from a road

Introduction

- Highways impact on wildlife:
- 1. habitat fragmentation
- 2. associated human development
- 3. habitat loss
- 4. direct mortality
- 5. displacement and avoidance

Introduction

- Habitat fragmentation
- disrupt movement patterns
- alter social structure
- small isolated populations

Introduction Mitigation efforts

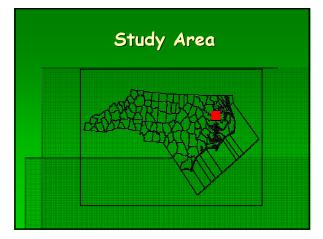
Justification

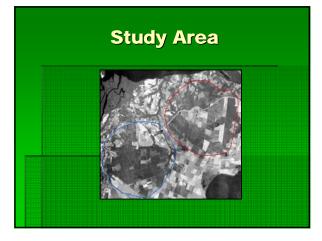
Few studies

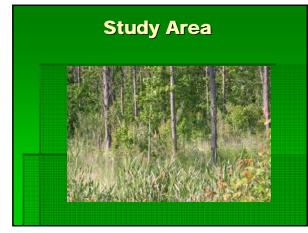
 Effectiveness of mitigation efforts?

Justification

- Primary species of concern



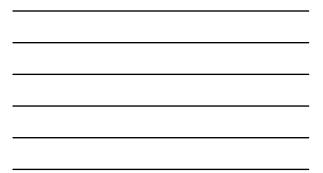

Justification


- 2000 First phase began
- 2001 Field work completed
- 2005 Highway Construction completed
- May 2006 2nd phase began

Objectives

- Compare abundance and density of black bears between the 2 phases of the study
- Compare genetic structure of black bears between the 2 phases of the study
- Determine the mitigation value of the 3 wildlife underpasses

Study Area



Methods

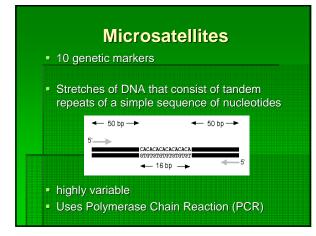
- Live trapping
 - Spring and Summer 06 & 07
 - Hair and tissue samples collected
 - Tooth samples
- Hair sampling
 - Fall 2006 (7 weeks)
- Hair sample analysis
 - Fall 07 and Spring 08

Livetrapping


Livetrapping

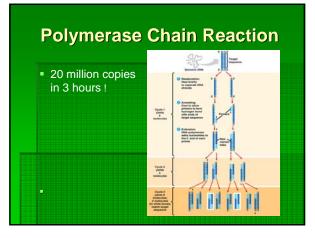
Hair Sampling Design

70 hair-trap locations



Hair Collection

Selecting Samples


- 25 sample sites from each sampling period
- 1 sample from each site

Hair Preparation and Analysis

- DNA extraction
- DNA Amplification
 PCR

Genetic Analysis				
Fragment Analysis				
- Unique DNA profile	Sample 1			
	Sample 2			
	Sample 3			
	Sample 4	TEST.EO		
	Sample 5			

Population and Density Estimate

Mark Recapture Experiments

- Advantages of noninvasive genetic sampling
 - increased capture probability
 - decreased tag loss
 - less intrusive

"01		(
sn:	adow ef	tect			
I I I I I I I I I I I I I I I I I I I					
2000000000000	Table 4. Probal	bility of identity estimates of b	lack bears identified	from hair samples on	
CONTRACTOR OF THE		ea, Washington County, North			
CONTRACTOR OF STREET, STRE	the treatment of	ica, massingera county, ricea	Probability of	Probability of	
	Locus	Number of alleles	identity	identity (siblings)	
12020202021	GIOC	4	0.606	0.789	
1 100 100 100 114	GIA	2	0.124	0.417	
			0.123	0.419	
	GHB				
	GI0B	6			
	G10M	6 6	0.088	0.391	
	G10M G10X	6 6 4	0.088 0.279	0.391 0.547	
	G10M G10X G10L	6 6 4 9 5	0.088 0.279 0.040	0.391	
	G10M G10X G10L G1D	6 4 9 5 8	0.088 0.279	0.391 0.547 0.335	
	G10M G10X G10L	6 6 4 9 5 8	0.088 0.279 0.040 0.175	0.391 0.547 0.335 0.470	
	G10M G10X G10L G1D MU23	6 4 9 5 8 8 5	0.088 0.279 0.040 0.175 0.067	0.391 0.547 0.335 0.470 0.364	
	G10M G10X G10L G1D MU23 MU50	6 4 9 5 8 8 5	0.088 0.279 0.040 0.175 0.067 0.089	0.391 0.547 0.335 0.470 0.364 0.390	
	G10M G10X G10L G1D MU23 MU50	6 6 4 9 5 8 5 5 60°	0.088 0.279 0.040 0.175 0.067 0.089	0.391 0.547 0.335 0.470 0.364 0.390	

Mark-Recapture Studies

- Open population models
- Closed population models
 multiple mark-recapture models

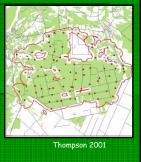
Population estimate

- Only closed models were considered
 - short time period (7 weeks)
 - No births occurred
 - deaths not likely significant
 - Immigration and emigration not significant

Multiple Mark-Recapture Models

Used with >2 sampling periods

Equal Catchability Model (Mo or null model) Assumes
 Population is closed


- 2. Animals do not lose their marks
- 3. All marks are recognized during each trapping session
- 4. Every animal is at equal risk of capture

Multiple Mark-Recapture Models

- Models to relax the assumption of equal catchability
 - M*k*
 - Mh
 - Mt - Mtb, Mth, Mbh, and Mtbh

Density Estimation

 Density = (N) / effective study size.

Genetic Structure

- Genetic Relatedness
- Heterozygosity
- Population Structure
 - Gene Flow
 - Fst

Genetic Relatedness

- Proportion of shared alleles
 Among individuals
 - Between study areas
 - Between subpopulations
 - Between north and south of the highway

Heterozygosity

Measure of genetic variation
 low levels

Population Structure

- Gene Flow average number of migrants exchanged between local populations per generation (Nm)
- "One-migrant-per-generation" rule

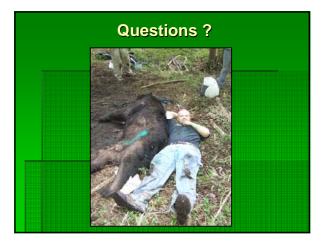
Population Structure

FST

- Separate components of genetic variation into hierarchical levels:
- Measures the reduction in heterozygosity of subpopulations relative to the total population

FST = (HT – HS) / HT

CONTROLAREA DATA CONTROLAREA DATA


Acknowledgements

- Dr. Frank van Manen
- University of Tennessee
- NC DOT
- NC Wildlife Resources Commission
- Weyerhauser Company

Thanks To

 Matthew McCollister, Tonya Nicholson, Ben Augustine, John Harrelson, Rupert Medford, Debbie Mauney, Joey Hinton, Laura Thompson, Jason Kindall and many landowners

