

• As far as wood science aspect is concerned, the mechanical contribution of process in the cell wall is not fully understood .

Tennessee Forest Products Center

Introduction

Nanoindentation testing

- Wimmer was the first to prove the capability of nanoindentation to determine mechanical properties of cell walls in wood.
- It allows an indenter to penetrate the sample of a material, at the same time, the penetration depth and load can be recorded. As a result, the stiffness and hardness of the indented location can be calculated.

Introduction

Michael D. Uchic, Dennis M. Dimiduk. A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Materials science and engineering A 400-401 (2005) 268-278

Invested a methodology for performing uniaxial compression tests on

Sample having micron-size dimensions.
Sample fabrication is accomplished using focused ion beam milling to create cylindrical samples of uniform cross-section that remain attached to the bulk substrate at one end.

Once fabricated, samples are tested in uniaxial compression using a

nanoindentation device outfitted with a flat tip, and a stress-strain curve is obtained. • a single-crystal Ni superalloy, D<5 um, size effect appeared.

 The typical accelerating voltage is between 5 and 50 keV while the primary ion penetration depth is ~20 nm (25 keV Ga+)

Tennessee Forest Products Center

Introduction

FIB Application

- FIB technology was first used to improve semiconductor devices for maskless implantation techniques. Then the FIB became a powerful tool for transmission electron microscopy (TEM) sample preparation.
 Although the most popular application area of FIB is
- Although the most popular application area of FIB is semiconductor field, FIB is a versatile tool, it can mill most kinds of materials. It can be used in solid state devices for lithography, etching, deposition and doping.

Introduction

Damage in the sample surface It was reported that at 30 keV, the top 25 nm of a silicon substrate will be amorphized.

Minimize the milling time
 Lowering the gallium ion energy in the final step of milling
 A plasma cleaner.
Low energy Ar ions were induced by immersing the sample in the plasma source, while the
ratio of Ar:O₂ is 3:1.

Yet some researchers said that the results obtained from a wide range of materials show that important results can be received without damage layer removal.

Objectives

- The objective of this work is to investigate the micro mechanical properties of wood cell wall through a micro-pillar uniaxial compression test.
- The sample will be prepared by a focused ion beam (FIB) system.
- Yield stress and modulus of wood cell wall will be invested, and this engineering modulus can be compared with the result got by nanoindentation test.

Methods

Equipment

- Microtoming (glass knife and diamond knife)
- Optical microscopy
- Atomic force microscopy (AFM)
- Scanning electron microscopy (SEM)
- Focused ion beam (FIB)
- Micro-compression system
- Nanoindentation

Acknowledgements	
 Dr. Siqun Wang Dr. John Dunlap Dr. Cheng Xing Dorothy Coffey Rosa Trejo 	(UTK) (UTK) (UTK) (ORNL) (ORNL)
	Tennessee Forest Products Center

Questions? Thank you