Comparison of Video Mapping and Field Measurements of Stream Channel Substrate

Outline

Justification for Research \& Introduction
Objectives \&
Hypotheses
Methods \& Analysis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why Measure Substrate?

Define the Stream

- Particle size distribution

Channel-bed roughness

- Measure the Stream - Ecological and Hydrologica
- Bed-load transport rates
- Monitor the Stream

- Particle size distribution is the first channel
characteristic to change in response to land management activities

\qquad
\qquad

Introduction

- Video Mapping
- Growing field in water resources
- Advantages
- Quick
- Less field time $=$ Less cost
- Not effected by storm event

Ease

- Data Analysis
- Disadvantages

How accurate is it?

Objectives \& Hypotheses

Primary Objective

- Compare video mapping and field measurement techniques, using a frame measurement as a control.
- H_{0} : Video mapping and transect measurement techniques do not differ in means by more than 15% in particle size, percent distribution, or diameter class of substrate composition.
\qquad

Objectives \& Hypotheses

- Secondary Objectives
- Find the most accurate float pattern
- H_{0} : The video mapping float patterns do not differ in means by more than 15% in particle size, percent distribution, or diameter class of substrate composition.

Objectives \& Hypotheses

Secondary Objectives

- Find the most accurate grid technique
- H_{0} : The transect measurement techniques do not differ in means by more than 15% in particle size, percent particle size, p
distribution, or distribution, or substrate composition.

Objectives \& Hypotheses

Secondary Objectives

- Measure single
observer variability
- H_{0} : Single observer variabilility will not vary more than 15\% between stream reach study sites.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods

\lrcorner Field Measurements (Wolman Pebble Count)
Thalweg $\rightarrow 100$ points within the thalweg

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods

\lrcorner Field Measurements (Wolman Pebble Count)

- Thalweg $\rightarrow 100$ points within the thalweg
- Zig-Zag $\rightarrow 100$ points taken on a 45 degree angle from wetted edge to wetted edge

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods
\lrcorner Field Measurements (Wolman Pebble Count)
Thalweg $\rightarrow 100$ points within the thalweg

- Zig-Zag $\rightarrow 100$ points taken on a 45 degree angle from wetted edge to wetted edge
- Proportional \rightarrow stream segments divided by proportion of each habitat unit and 100 points taken on lines perpendicular to flow

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods

Field Measurements (Wolman Pebble Count)

- Thalweg $\Rightarrow 100$ points within the thalweg \qquad
- Zig-Zag $\rightarrow 100$ points taken on a 45 degree angle
from wetted edge to wetted edge
- Proportional \rightarrow stream segments divided by
proportion of each habitat unit and 100 points taken on lines perpendicular to flow $\|$
- Frame \rightarrow standard method (control) that assures 90\% confidence in observer accuracy

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Analysis

Particle Retrieval from
\qquad
Video

- How to read video?

Time
Distance

- Random

Visual Estimation
ANOVA

- Particle Size, Percent Distribution, and Diameter Size Class

