

Existing Research

-03-

Researchers have developed empirical models of tree canopy cover to produce geospatial products.

- (3) For subpixel models, percent tree canopy cover estimates (derived from fine-scale imagery) serve as the response variable.
- CS The explanatory variables are developed from reflectance values and derivatives, elevation and derivatives, and other ancillary data.

Existi	ng Kesearch
	-03
 Available Literature multi-season image Lopez et al. 2001 Hansen et al. 2003 	e includes examples suggesting that ry is appropriate
And others suggest appropriate Carreiras et al. 200 Carsen et al. 2011	ing that only single-season imagery i

Methods

CB-

- ₩ We compared models developed from leaf-on only Landsat imagery with models developed from multiseason imagery for a study area in Georgia, US.
 - 😋 Study Area
 - Sampling Methods Explanatory data
 - Statistics
 - 3 Statistics

5

Explanat	tory Data
(3
∝ Six Landsat-5 scenes wer	e downloaded from MRLC
(Multi-Resolution Land C	Characteristics) – 2011
	,
Landsat-5 Acquisition Dates for	Leaf-On, Leaf-Off, & Spring
Image	Date
Landsat-5 (path 19 row 36)	
leaf-on	24-Jul-08
leaf-off	16-Jan-09
spring	9-Apr-10
Landsat-5 (path 19 row 37)	
leaf-on	9-Aug-08
leaf-off	16-Jan-09
	9-Apr-10
apping	7=/10[=10]

Statistics

CB

- We used the <u>"random forest"</u> algorithm (Breiman, 2001) to construct empirical models of percent tree canopy cover.
- Uses <u>bootstrap sampling</u> to develop multiple models and improve prediction (without replacement)
 Random = bootstrap sampling of the data
 - S Forest = an ensemble of regression trees

Statistics CS • For modeling, we used the <u>R ver. 2.12</u> (R Development Core Team, 2010) <u>random forest library (Liaw and Wiener, 2002)</u> to construct empirical models of percent tree canopy cover.

Statistics C3 This was done using the 4x grid, with subsample 4 being a hold-out for model comparison. Subsample 1: multi season model Subsample 2: leaf-on Subsample 2: leaf-on Subsample 3: reduced Subsample 4: hold-out

Statistics CCS • We performed two principal component analyses: • One for standardized Landsat data & derivatives • One for standardized elevation data & derivatives • One for standardized elevation data & derivatives • This retains *n* components that accounted for approximately 90% of the variation. • Models were then compared using the hold-out dataset.

Results 03 Reach component was interpreted and a representative variable was selected. The following 10 Landsat variables were retained: Leaf-off TM band 3 Leaf-off TM band 3 Standard deviation of spring TM band 3 Standard deviation of leaf-off greenness Standard deviation of leaf-off greenness Standard deviation of leaf-on TM band 6 Spring NDVI Leaf-on NDVI Standard deviation of spring wetness Standard deviation of spring TM band 4 Spring TM band 5 Leaf-off brightness

Discussion C3 • We suggest that leaf-on imagery is adequate for the development of empirical models of percent tree canopy cover in the Piedmont of the Southeastern United States. • We also recommend this model for better efficiency while maintaining accuracy.

References

- Breiman, L., 2015. Ram Brockleback, J.C., and Brockleback, E.B., V.A. Theo 2003. Charrison, J.M.B. J.M.C. Charloson, J.W.G. (2017). Conductors, IWG, 1907. St. Conductors, IWG, 1907. St. Conductors, IWG, 2007. St. Conductors, IWG, 2007. St. Diatoro, M.Y., W.B. Coll-Bioparon, M.Y., W.B. Coll-Bioparon, M.Y., W.B. Coll-Bioparon, M.Y., W.B. Coll-Bioparon, M.Y., Charlow, J. Theo-Francesco, C.F. Sc. Dull.

