
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Presentation Outline

- Extension at UT-FWF ----> Clatterbuck \qquad
$======$
-Why Mixed Species Plantings?
- Crowns and Branching Patterns
- Spacing
- Present Research

A Quick Introduction

- Global demand for hardwood sawlogs and veneer logs continues to grow
- Grade is more important than volume
- Social demands for increased diversity in plantations
- Afforestation efforts continue to increase

Why Mixed Species

 Plantings?????????

Objectives

- Produce a forest more natural in appearance
- Produce a forest with more diverse flora \& fauna
- Produce multi-products
- Develop high grade boles

Advantages

- More resistant to biotic agents
- More resistant to mechanical damage
(fire, wind, freezing)
- Training effect of upper and lower canopies
- Better utilization of the site
- Diversity
- Log Grade ??? --- crown stratification
\qquad

Disadvantages

- Controlling interactions between species is complicated --- species differences
- More difficult woods operations
- Planning and perhaps costs to achieve results

Factors

- Spacing within and between species
- Site suitability for each species, even within a genus \qquad
- Growth rate of each species
- Crown form of each species

Plantation Establishment

Monospecific
vs.
Multispecific

Pine Mentality ???

- Conventional plantation management
- Tight Spacing
- Monospecific
- Thinning(s)
- Probably will not work with most hardwoods - specifically oaks, crown stratification does not occur

Example: Cherrybark Oak and Sweetgum (Natural Stands)

Importance of Crown Form

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Monospecific

Free space between crowns with an excurrent growth pattern

Monospecific

No crown stratification in pure oak plantation decurrent growth pattern

Example species - Cherrybark oak

Multispecific

Multispecific

4.4.4.4.4

Multispecific

47/71/1

Multispecific

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comparison

Multispecific

Monospecific

\qquad
\qquad
\qquad
\qquad

Dynamics in Planted Stands

- Can we emulate natural stand dynamics in planted stands? \qquad
- Differences in crown development may \qquad result in stem quality differences
- Monospecific = narrow crown widths
- Multispecific = wider crown widths
(Data from natural stands) \qquad
\qquad

Pressing Question

- What is the impact of various silvicultural decisions on the production of quality hardwood logs? \qquad
- Understanding is Critical \qquad
\qquad
\qquad
\qquad

Branch Size and Occlusion

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Data - illustrated

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Identifying the "Knotty Core"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Identifying the "Knotty Core"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Without stratification crown development may be hindered
- Without stratification heavy intraspecific competition may result in stagnation
- Without stratification stem quality may be negatively influenced \qquad
\qquad

Spacing

- Wide Spacing Disadvantages
- Increased weed competition \& maintenance
- Reduced stem quality due to greater taper and longer branch retention
- Increased fire hazard
- Reduced erosion control

Spacing

- Wide Spacing Advantages

- Planting costs are less
- Trees attain larger diameters and become merchantable sooner
- Trees may produce greater quantities of seed/mast at an earlier age
- Increased understory growth will provide wildlife food and habitat.

Spacing

- Close Spacing Disadvantages

- Increased site preparation, planting and seedling costs
- Early timber stand improvement may be needed to reduce crown competition
- Access during initial thinning operations may be difficult.

Spacing

- Close Spacing Advantages

- Faster crown closure resulting is less weed competition and maintenance
- Improved stem quality (straighter boles and \qquad small, self-pruning branches)
- Large wood volumes accumulate in early years
- Greater number of trees to select from during thinning operations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spacing \& Planting

	4'	5	6'	7'	8'	9'	10'	12'	15'
4	2722	2178	1815	1556	1361	1210	1089	907	726
5^{\prime}		1742	1452	1244	1089	968	871	726	581
6'			1210	1037	908	807	726	605	484
7'				889	778	691	622	518	415
8'					681	605	545	454	363
9'						538	484	403	323
10'							436	363	290

Planting Schematics

Alternate Rows						
x	0	x	0	x	0	x
x	0	x	0	x	0	x
x	0	x	0	x	0	x
x	0	x	0	x	0	x
x	0	x	0	x	0	x

Planting Schematics

Double \& Single Species Rows

x	0	0	x	0	0	x
x	0	0	x	0	0	x
x	0	0	x	0	0	x
x	0	0	x	0	0	x
x	0	0	x	0	0	x

Planting Schematics

Alternate Species Within Rows

x	0	x	0	x	0	x
0	x	0	x	0	x	0
x	0	x	0	x	0	x
0	x	0	x	0	x	0
x	0	x	0	x	0	x

Planting Schematics

Surround One Species Within \& Between Rows

0	0	0	0	0	0	0
0	x	0	x	0	x	0
0	0	0	0	0	0	0
0	x	0	x	0	x	0
0	0	0	0	0	0	0

Conservation Planting Design

- Systematic

\qquad
\qquad
\qquad
\qquad
\qquad

Conservation Planting Design

- Closer Spacing

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Cond
- Even Closer Spacing - Recommended

\qquad
\qquad

Future Research

Planting at UT Cumberland Forest this Spring

3 species $\times 3$ spacings $\times 3$ reps

Future Research

Species Combinations:

Cherrybark Oak Mixed with
a. Yellow-Poplar
b. Black Cherry
c. Sweetgum

Planting Arrangement

Surround One Species Within \& Between

0	0	0	0	0	0	0
0	X	0	X	0	X	0
0	0	0	0	0	0	0
0	X	0	X	0	X	0
0	0	0	0	0	0	0

Summary

For Mixed Species Plantings

- Objectives ???
- Know your Site, Know your Species
- Spacing, Growth, Branches, Stem Quality
- Timing is critical
- Don't be afraid to be innovative!

Questions and/or
Comments if Time Permits

\qquad

