Effects of switching to a two-wire hair sampling system for capture-mark-recapture analysis

Kaitlin O’Connell, MS Candidate
Department of Forestry, Wildlife and Fisheries
November 21st, 2012
12:20PM PB 150

Outline
• Capture-Mark-Recapture basics and assumptions
• Non-invasive sampling
• Previous research
• Study area
• Methods
• Results
• Research implication and future directions

Capture-Mark-Recapture (CMR)

Lincoln – Peterson Model:
\[\hat{N} = \frac{n_1}{\hat{p}} \]
\[\hat{p} = \frac{m_2}{n_2} \]

- \(n_1 \) = # of animals captured in capture occasion 1
- \(n_2 \) = # of animals captured in capture occasion 2
- \(m_2 \) = # of marked animals captured in capture occasion 2
- \(p \) = capture probability
Capture-Mark-Recapture (CMR)

\[\hat{N} = \frac{n_1}{\hat{p}} \]
\[\hat{p} = \frac{m_2}{n_2} \]

\[n_1 \]
\[n_2 \]
Capture-Mark-Recapture (CMR)

\[\hat{N} = \frac{n_1}{\hat{p}} \quad \hat{p} = \frac{m_2}{n_2} \]

\[\hat{N} = \frac{3}{0.5} = 6 \quad \hat{p} = \frac{2}{4} = 0.5 \]

Assumptions (Otis et al. 1978):
1. Population is closed
2. Marks are not lost
3. Marks are correctly identified
4. All individuals have an equal probability of capture and that probability does not change

- **Time** – Capture probabilities vary over time
- **Behavioral** – Capture probabilities change due to a behavioral response from being captured (e.g., “trap-happy” or “trap-shy”)
- **Heterogeneity** – Capture probabilities differ by individual (e.g., females with cubs vs. females without)

- **Huggins (1991)** – Use of individual covariates
 - Weight, age, or capture frequency
- **Pledger (2000)** – Mixture Models
 - 2 proportions \(\pi \) of the population with different capture probabilities
 - Hard to catch \(\pi \) vs. Easy to catch \((1-\pi) \)
Capture-Mark-Recapture with Heterogeneity Mixtures

Lincoln – Peterson Model:
\[\hat{N} = \frac{n_1}{\hat{p}} \quad \hat{p} = \frac{m_2}{n_2} \]

Capture Probabilities Using Pledger’s Mixture Models:
\[\hat{p} = \pi_L \cdot p_L + \pi_H \cdot p_H \]
Capture-Mark-Recapture with Heterogeneity Mixtures

\[\hat{p} = \pi_L \cdot p_L + \pi_H \cdot p_H \]
\[\hat{N} = \frac{n_1}{\hat{p}} \]
\[\hat{p} = \frac{m_2}{n_2} \]

- \(n_1 = 3 \)
- \(n_2 = 4 \)
- \(m_2 = 3 \)
- \(\pi_L \) = proportion of individuals with a low capture probability
- \(\pi_H \) = proportion of individuals with a high capture probability

\[\hat{p} = 0.675 \cdot \frac{1}{4} + 0.325 \cdot \frac{3}{4} \]
\[\hat{p} = 0.437 \]
\[\hat{N} = \frac{3}{\hat{p}} \]
\[\hat{N} = \frac{3}{0.437} = 6.3 \]
Capture-Mark-Recapture with Heterogeneity Mixtures

\[
\hat{p} = 0.675 \times \frac{1}{4} + 0.325 \times \frac{3}{4} = 0.437 \\
\hat{p} = 0.437 \\
\hat{N} = \frac{3}{\hat{p}} \\
\hat{N} = \frac{3}{0.437} = 6.3
\]

\[
\hat{p} = \frac{3}{4} = 0.75 \\
\hat{N} = \frac{3}{\hat{p}} \\
\hat{N} = \frac{3}{0.75} = 4
\]

Capture-Mark-Recapture (CMR)

- Capture Probabilities
 - Heterogeneity – “Bane of CMR’s existence”
 - Hard to measure
 - Minimize or quantify it as much as possible to get reliable population estimates (Petit & Valiere 2006)
 - Biased \(p \)
 - High \(\rightarrow \) Underestimate \(N \)
 - Low \(\rightarrow \) Overestimate \(N \)
 - Want \(p \) as high as possible (>0.20)
 - Reduces chance that heterogeneity will go undetected
 - Can be low due to trap bias or trapping effort

Non-invasive sampling

- Uses DNA as marker
 - Collection of hair, feces, or feathers
- No physical handling of the animal
 - Goal to reduce negative (“trap-shyness”) behavioral biases after first capture
- Increase sampling area and effectiveness
 - Can cover a larger area and increase the number of “traps” in the study area
Study Area:
Upper Atchafalaya River Basin

Sampling Methods

- Study began in 2007
- 4 hair sites per home range
- Grid 1.6 km²
- Strands of barbed-wire were stretched across 3-4 corner trees
- Sites were baited and scent lure was hung

- Sites were checked every 7 days for 8 weeks
- Hair was collected if >5 guard hairs or >20 under-fur hairs.
- Samples were sent to Wildlife Genetics International for analysis.
- WGI sub-sampled criteria: 25 samples/week

WGI sub-sampled criteria:

- 25 samples/week

Sampling Methods

- Sites were checked every 7 days for 8 weeks
- Hair was collected if >5 guard hairs or >20 under-fur hairs.
- Samples were sent to Wildlife Genetics International for analysis.
- WGI sub-sampled criteria: 25 samples/week

Sampling Methods

- Study began in 2007
- 4 hair sites per home range
- Grid 1.6 km²
- Strands of barbed-wire were stretched across 3-4 corner trees
- Sites were baited and scent lure was hung

- Sites were checked every 7 days for 8 weeks
- Hair was collected if >5 guard hairs or >20 under-fur hairs.
- Samples were sent to Wildlife Genetics International for analysis.
- WGI sub-sampled criteria: 25 samples/week
Bait gone with no hair

Low numbers of males captured

Methods

Set between 40-60cm

Bottom wire: 35-40cm

2010-2012:

Change in Methods

2007-2009 (Lowe 2011):

2010-2011:

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

2007-2009

2010-2011

26M:44F
OR 1:2

39M:47F
OR 1:1.2

Males

Females

2007-2009

2010-2011

7/11/09 8:18 AM
60 Sec

7/21/11 9:19 AM
60 Sec
Overall Question:
How does the addition of a second wire affect the estimates of population parameters?

Hypothesis:
Proportion of hard to catch males (πL) will decrease in year 4 of sampling due to the addition of a second wire.

Methods: Data Analysis
- Data from 2007-2010 (2011 excluded)
- Program MARK (White and Burnham 1999)
 - Closed capture with heterogeneity
 - Constant (\(\pi \))
 - Group effects (g)
 - Time dependent (t)
 - One vs. Two wire (Wire)
 - One vs. Two wire for Males (Wire Male)
- AIC for Model Selection
Model Set

<table>
<thead>
<tr>
<th>Model</th>
<th>AICc</th>
<th>Delta AICc</th>
<th>AICc Weights</th>
<th>Model Likelihood</th>
<th>Num. Par</th>
<th>Deviance</th>
</tr>
</thead>
<tbody>
<tr>
<td>π(.), π(g), N(t*g)</td>
<td>899.0029</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>675.4288</td>
<td></td>
</tr>
<tr>
<td>π(wire), π(g), N(t*g)</td>
<td>899.1548</td>
<td>0.1519</td>
<td>0.22254</td>
<td>0.9268</td>
<td>13</td>
<td>673.5403</td>
</tr>
<tr>
<td>π(wire male), π(g), N(t*g)</td>
<td>899.6355</td>
<td>0.6355</td>
<td>0.175</td>
<td>0.7288</td>
<td>13</td>
<td>674.0272</td>
</tr>
<tr>
<td>π(g), π(g), N(t*g)</td>
<td>900.8414</td>
<td>1.8414</td>
<td>1.8414</td>
<td>1.8414</td>
<td>13</td>
<td>675.2388</td>
</tr>
<tr>
<td>π(wire), π(g), N(t*g)</td>
<td>901.0461</td>
<td>2.0461</td>
<td>0.1519</td>
<td>0.22254</td>
<td>0.9268</td>
<td>14</td>
</tr>
<tr>
<td>π(wire male), π(wire male), N(t*g)</td>
<td>901.3381</td>
<td>2.3381</td>
<td>0.22254</td>
<td>0.9268</td>
<td>14</td>
<td>673.9788</td>
</tr>
<tr>
<td>π(g), π(g), N(t*g)</td>
<td>902.6771</td>
<td>1.6771</td>
<td>0.1519</td>
<td>0.22254</td>
<td>0.9268</td>
<td>14</td>
</tr>
<tr>
<td>π(g), π(g), N(t*g)</td>
<td>904.4021</td>
<td>3.4021</td>
<td>0.1519</td>
<td>0.22254</td>
<td>0.9268</td>
<td>14</td>
</tr>
<tr>
<td>π(wire), π(wire), N(t*g)</td>
<td>905.9987</td>
<td>5.9987</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>661.8761</td>
</tr>
<tr>
<td>π(wire), π(g), N(t*g)</td>
<td>907.2976</td>
<td>8.2976</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>681.6833</td>
</tr>
<tr>
<td>π(g), π(g), N(t*g)</td>
<td>911.3275</td>
<td>12.3275</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>671.5464</td>
</tr>
<tr>
<td>π(wire), π(g), N(t*g)</td>
<td>913.6904</td>
<td>14.6904</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>661.7583</td>
</tr>
<tr>
<td>π(wire), π(g), N(g*t)</td>
<td>916.5476</td>
<td>17.5476</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>662.0933</td>
</tr>
<tr>
<td>π(wire), π(wire), N(t*g)</td>
<td>918.7587</td>
<td>19.7587</td>
<td>0.0012</td>
<td>0.0012</td>
<td>13</td>
<td>657.9562</td>
</tr>
</tbody>
</table>

β (wire), β (wire male), and β (g + wire) did not differ from zero.

Research Implications & Future Directions

- **No over-whelming results**
- **Needs more data**
 - Comparing 3 years vs. 1 year of data
 - Increase sub-sample size
 - 2012 data
- **Continue with 2-wire system**
Acknowledgements

• Committee Members:
 - Dr. Joe Clark, Major Advisor
 - Dr. Frank Van Manen
 - Dr. Arnold Saxton
 - Dr. Ben Fitzgerald

• Funding agencies:
 - USFWS—Debbie Fuller
 - LDWF — Maria Davidson
 - BBCC
 - USGS
 - UTK
 - USACE

• Many landowners in Pointe Coupee Parish
• “Bear Lab” members
• Technicians: Alex Swearingen, Matt Parker, & Logan Moon

References

Photo References

• http://www.thenaturegroup.com/helveta.htm
• Groove, M. 2010 http://mangrove.info/喜 poets/animal/100/Groove.pdf
• http://www.birds.cornell.edu/2011/04/02/animal-facts/F-2-2/p.jpg