

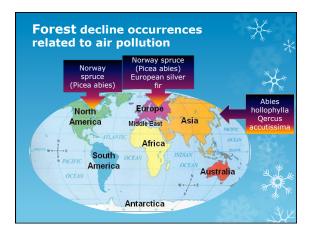




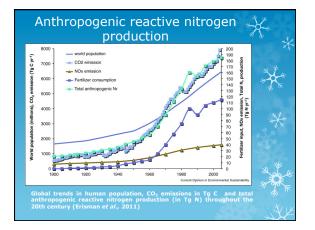
# **Important Challenges**

- **1.Atmospheric deposition**
- 2.Climate change to drought

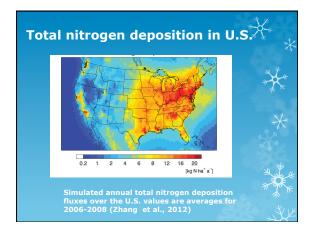
# Introduction

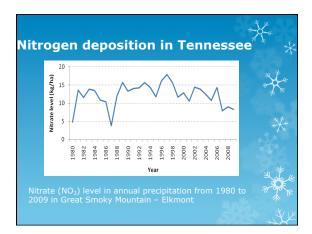

#### **1. Atmospheric Deposition**

- airborne particles and gases are deposited on the earth's surface (Potter, 2000)


#### Atmospheric Nitrogen increase

- Nitrogen (N) and sulfur (S) form acid rain
  US nitrogen deposition 3.74 to 4.54 Teragrams N
- Europe nitrogen deposition 8.42 to 11.15 Teragrams N per year (Holland et al., 2005)











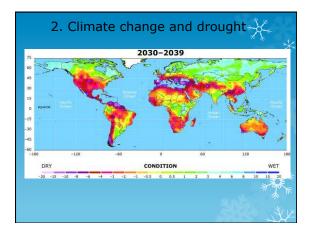





#### **Effects of nitrogen deposition**

- O Chronic inputs of N deposition can cause leaching of base cations from the soil (McLaughlin et al., 1998), tree mortality (McNulty et al., 2005)
- increase aluminum toxicity to roots (Shortle and Smith, 1988),
- o decrease fine root biomass (Nadehoffer, 2000),
- o reduce tree cold tolerance (Sheppard, 1994), and
- increase freezing injury in spruce needles (Schaberg et al., 2002).

#### Responses of eastern hardwood forests to excess nitrogen (N) deposition


- increases in plant tissue N (Thomas et al., 2010)
- > soil N cycling -
- nitrate (NO3-) leaching (Bailey et al.
   2005)
- decreases in soil carbon:nitrogen (C:N) ratio -(Driscoll et al. 2003).
- > shifts in community composition, including declines in species
   >> richness and abundance -(Gilliam 2006)

#### Responses of eastern hardwood forests to excess nitrogen (N) deposition

- O Benefit from nitrogen deposition (marked increase tree growth)
- All hardwood tree species with arbuscular mycorrhizal associations
- Six tree species with ectomycorrhizal associations

#### Responses of eastern hardwood forests to excess nitrogen (N) deposition

- Benefit from nitrogen deposition (marked increase tree growth)
   All hardwood tree species with arbuscular mycorrhizal associations
- associations - Six tree species with ectomycorrhizal associations
- Detriment from nitrogen deposition (decrease growth and death)
- -twelve species including conifers, birch and oaks with ectomycorrhizal association.



| Multi                                                 | *<br>*<br>*                                        | ***                                   |                                                        |        |
|-------------------------------------------------------|----------------------------------------------------|---------------------------------------|--------------------------------------------------------|--------|
| a                                                     | b                                                  | c                                     | l d                                                    |        |
| CAL = 270 eq/ha/yr                                    | CAL = 270 eq/ha/yr                                 | CAL = 270 eg/ha/yr                    | CAL = 270 eq/ha/yr                                     | × × H  |
| ↓ ¦                                                   | Ļ                                                  | ↓ ↓                                   | t t                                                    | MARK R |
| No other stress                                       | + 3 yr Drought<br>Stress                           | + 3 yr Drought<br>Stress<br>+ insects | + 3 yr Drought<br>Stress<br>+ insects<br>+ temperature | *      |
| ↓ +                                                   | Ļ                                                  | ; ↓                                   | ; ↓                                                    |        |
| N leaching = 0<br>Mortality = 0%                      | N leaching = 1<br>Mortality = 5%                   | N leaching = 10<br>Mortality = 10%    | N leaching = 25<br>Mortality = 100%                    |        |
| CAL > 270 eq/ha/yr                                    | CAL = 180 eq/ha/yr                                 | CAL = 140 eq/ha/yr                    | CAL < 90 eq/ha/yr                                      |        |
| Note: These CAL values a<br>changes in response to ep | ire not based on any specific e<br>risodic stress. | cosystem conditions but conce         | otually represent CAL                                  |        |
| (McNuity and                                          |                                                    |                                       |                                                        |        |
|                                                       |                                                    |                                       |                                                        | J.Y.   |

# **Justification**

- Provide useful guidelines for
- o best fertilizer management
- assist in the selection of areas and species

\* \*\* \*\*

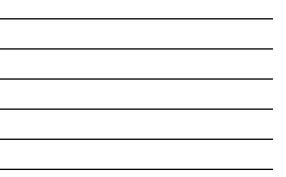
 $\rightarrow$ 

- general prediction of future species composition

### **Objectives**

- To determine acclimation or physiological changes of drought tolerant species to nitrogen addition
  To compare the response of selected conifer and deciduous trees to nitrogen addition
- To establish the interaction of shade and drought to plants' response with different nitrogen addition

#### **Hypotheses**


- High drought tolerance species will acclimate more to nitrogen deposition
   Deciduous trees response better to more nitrogen than

- conifers Shaded trees are less affected by drought compared to unshaded trees

| Planting materials                                      |                      |                    |                    |  |  |  |
|---------------------------------------------------------|----------------------|--------------------|--------------------|--|--|--|
| Species                                                 | Drought<br>tolerance | Nitrogen<br>uptake | Shade<br>tolerance |  |  |  |
| Acer saccharinum L.<br>silver maple                     | low                  | slow               | Yes                |  |  |  |
| Robinia pseudoacavia L.<br>black locust                 | high                 | fast               | No                 |  |  |  |
| Quercus falcata Michx. Var.<br>falcata southern red oak | high                 | slow               | Intermediate       |  |  |  |
| Quercus michauxii Nutt.<br>swamp chestnut oak           | low                  | fast               | No                 |  |  |  |
| Quercus velutina Lam.<br>black oak                      | high                 | slow               | Intermediate       |  |  |  |
| Liquidambar styraciflua L<br>sweetgum                   | low                  | fast               | No                 |  |  |  |
| Platanus occidentalis L.<br>sycamore                    | high                 | fast               | No                 |  |  |  |
| Pinus echinata Mill.<br>shortleaf pine                  | high                 | fast               | -                  |  |  |  |
| Pinus strobus L.<br>eastern white pine                  | low                  | slow               | -                  |  |  |  |

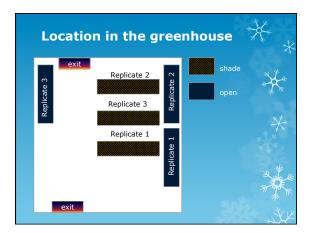








### **Proposed methods**

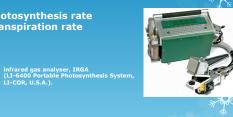

• Experimental design -complete randomized block split plot design

×

- 1. 0.2 g/m2 Nitrogen open/unshaded
- 3. 20.0 g/m2 Nitrogen open/unshaded 4. 0.2 g/m2 Nitrogen shaded

- Water stress will be induced at the end of the experiment








### **Parameters**

Proposed method for Objective 1 : To determine acclimation or physiological changes of drought tolerance species to nitrogen addition

Photosynthesis rate Transpiration rate



Proposed method for Objective 2 :To compare the response of selected conifer and deciduous trees to nitrogen addition

Growth : Leaf area Total root and shoot length Biomass root and shoot Chlorophyll content









Water potential Photosynthesis rate injury

Measurements are before and after water stress



#### Statistical analysis



• Regression – relationship of nitrogen, water stress and photosynthetic and transpiration rates

# References

- Balley, S.W., Horsley, S.B., Long, R.P. (2005). Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Science Society of America Journal. 69: 681-690.

- e Alleghery Plateau, Pennsylvania. Soli Science Society of America Journal. 69: Colt, C., While, D., Aber, J.D., Boyer, E.W., Castro, N.S., Cronan, C., Goodale, Colt, C.T., W.RM, D., Aber, J.D., Boyer, E.W., Castro, N.S., Cronan, C., Social, J., W., Callen, D., Charles, C., Social, C., Castro, M.S., Conan, C., Social, C., Castro, P.S., Social, S., Social, S., Conan, C., Social, and agement options. BioScience. 53: 357-374. Integen In the environment and its effect on climate change. Current in environmental sustainability Volume's Jasues: Pages: 281-290 am, F.S. (2006). Response of the herbaceous layer of forest ecosystems to so introgen deposition. Journal of Cology. 94: 1176-1191. Indi, E.A., Braswell, B.H., Suirman, J., Lamarque, J.F., 2005. Nitrogen deposition del: Scol. Appl. 15 (1), 38-57. Uhy, S.G., Bogga, J.Aber, J.O., Rustad, L., and Hagill, A. (2005). Red spruce hum data and Baster and Baster Bastro, 27 Pages: 279-2016. Forest programment and the stationary of the state state and state state del: Scol. Appl. 15 (1), 38-57. Uhy, S.G., Bogga, J.Aber, J.O., Rustad, L., and Hagill, A. (2005). Red spruce programment and state and States and States and States and States and States and States and Baster and States and State
- m. W. C., Smith, K.T., and Lawrence, G. B. (2010). Aluminum-induced calcium ncy syndrome in spruce-pine forest in NW Russia. Abstracts of papers of the an chemical society Volume: 240 Meeting Abstract: 30-650C S. R.Q., Canham, C.D., Weathers, K.C.,Goodale, C.L. (2010). Increased tree storage in response to introgen deposition in the US. Nature Geoscience. 3:







# **Images resources**

- enthalpy solution structure water ionic compound dissolving t page 18.html
- http://www.canstockphoto.com/drop-animated-5828164.html http://www.ucdenver.edu/academics/InternationalPrograms/
- http://www.ucdenver.edu/academics/InternationalPrograms/ CIBER/WorldRegionResources/Pages/ WorldRegionResources.aspx
- http://www1.ncdc.noaa.gov/pub/data/cmb/images/drought/ nadm/usnmx-phdi-pg.gif

Thank you

Dr. Jennifer Franklin Dr. Dave Buckley

- http://msnbcmedia4.msn.com/j/MSNBC/Components/Photo/ \_\_new/101019\_Drought2039.grid-8x2.jpg
- 0
- <u>http://hydrology1.nmsu.edu/teaching/soil698/pressure-bomb/</u> 1000.JPG
- http://www.deagle.com.tw/images-2/biomate3-1.gif
- http://envsupport.licor.com/images/env/product\_list\_photos/



 $\mathbf{x}$