Overview

• Introduction
 • What is OSB?
 • What is LCA?
• Justification
• Impacts
• Research Objectives
• Proposed Methods
• Works Cited
• Acknowledgements
• Funding Organizations

Introduction

What is OSB?

• Created in the late 1970’s
• Wood composite, evolved from waferboard
• Flakes strategically oriented, not random
Introduction

- Hemicelluloses extracted flake
 - Potential environmental/economic benefits
- Previous study revealed improved panel properties
 - Dimensional stability and mold resistance
- Hemicelluloses, a hydrophilic polymer in wood

Source: Hosseinaei et al. 2011

Introduction

- Reduction in hemicelluloses content via pretreatment
- Reduced inputs needed for meeting industry standards
 - Strength, water absorption, and thickness swell
- Reduction of inputs will likely lead to reduced environmental/economic impact

Introduction

- Previous work has also been done in Life Cycle Assessment (LCA) of OSB
- LCA is an all-inclusive approach for analyzing environmental impact
 - Allows comparison of goods and services on equal & holistic basis

Source: Kline 2005
Justification

• OSB is increasingly used as low cost alternative to plywood
 • Significant because amount of energy used is roughly double

<table>
<thead>
<tr>
<th>Energy Type</th>
<th>Plywood</th>
<th>OSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>776</td>
<td>1870</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>1550</td>
<td>3706</td>
</tr>
<tr>
<td>Uranium</td>
<td>28</td>
<td>98</td>
</tr>
<tr>
<td>Biomass</td>
<td>181</td>
<td>3201</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Electricity other</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5649</td>
<td>11145</td>
</tr>
</tbody>
</table>

Source: Puettmann and Wilson 2005

Justification

Major sources of impact
• Resin production
• Emissions control

• Resin production is the most energy intensive process
 • Consumes three times the energy than plywood in this area

Source: Puettmann and Wilson 2005

Justification

• Emissions control is important
 • Emissions include
 • Carbon monoxide
 • Particulate matter
 • Nitrogen oxide
 • Volatile organic compounds
 • Incineration of volatile organic compounds (VOC)
 • Big contributor of fossil energy use

Source: Paredes 2009
Justification

Research Objectives

• Use existing data to model environmental and economic life cycle of OSB production using hemicelluloses-extracted flakes

• Establish input minimums for resin and wax input for making acceptable OSB with hemicelluloses-extracted flakes

Proposed Methods

Hot water hemicelluloses-extraction

• Large spherical rotating digester

• 41.5kg of Southern yellow pine flake

• 90% moisture content

• Heated to 155°C and maintained for 30 min.

• Water to flake ratio of 20:1
Five treatments, two repetitions
• Normal flake 1% wax 4% resin (Control)
• Extracted flake 1% wax 4% resin
• Extracted flake no wax 4% resin
• Extracted flake no wax 3.5% resin
• Extracted flake no wax 3% resin

How the panel is cut is important
• Initial panel size is 24” x 24”
 • Panel trimmed to 20” x 20”
 • Cut to maximize testing repetitions
 • Five tests for bending strength
 • Six tests for internal bond
 • Two tests for water absorption

Panel Testing
• Bending Strength (MOR)
• Modulus of Elasticity (MOE)
• Internal Bond (IB)
• Water Absorption & Thickness Swell
• Mold Susceptibility
 • Measured using ASTM D1037 procedures
 • Analyzed using one-way analysis of variance
 • To be performed with SPSS
 • Duncan’s multiple range test
 • Used for comparing means
Works Cited

Acknowledgements

- Dr. Adam Taylor, Associate Professor, University of Tennessee
- Dr. David Harper, Associate Professor, University of Tennessee
- Dr. Brian Via, Assistant Professor, Auburn University
- Kevin Wise, Director of Applied Research and Pilot Plant Coordinator, North Carolina State University
- Dr. Omid Hoesseni, Center for Renewable Carbon
- Dr. Sukwon Kim, Post-doctoral Research Associate, Center for Renewable Carbon
- Dr. Joon-Woo Kim, Post-doctoral Research Associate, Center for Renewable Carbon
- Dillon Alley, Student Assistant, University of Tennessee

Funding Organizations

- USDA
- CRC