The effects of multiple stresses on Fraser fir physiology in Great Smoky Mountains National Park

Doug Kaylor
Ph.D. Student
University of Tennessee
Dept. of Forestry, Wildlife, and Fisheries

Southern “Boreal” Forests

- Occur in eastern TN, western NC and southern VA
- “Island-like” relict population from 18,000-12,500 years ago (Delcourt and Delcourt 1987)
- Habitat to several rare and endemic species
- GRSM contains 74% of ~90,000 acres of remaining spruce-fir forests (Dull et al. 1988)

Abies fraseri

- Endemic to southern Appalachians (1767- 2037 m)
- Inbreeding and loss of heterozygosity
 (Potter et al. 2008)
- 30-80 ft. tall, 12” (30.5 cm) DBH at maturity
- 40 years to maturity
- Lifespan: 180-200 years
Individual Stresses

- **Balsam Wooly Adelgid**
 - Causes reduction in water and sap conductance and death in 2-5 years (Hollingsworth et al. 1991)

- **Moisture**
 - Moderate water stress reduced root and shoot biomass by 20%, as well as leaf conductance and transpiration (Tseng et al. 1988)

Temperature
- A 3°C increase in mean July temp -> raise niche 480 m in elevation (Delcourt and Delcourt 1998)
- Changes in phenology may increase frost damage, insect depredation (Emerson et al. 2006) or increase growth and fecundity (Rossi et al. 2011)
- *Picea rubens* seedlings from different seed sources responded differently to elevated warming (Hagen 2006)
Atmospheric Deposition

- wet, dry and fog deposition ~ 30 kg N ha\(^{-1}\) yr\(^{-1}\) (Johnson et al. 1991)
- ~20 kg N ha\(^{-1}\) yr\(^{-1}\) leach out (Nodvin et al. 1995)
- Increased soil acidity -> Al solubility -> decreases in Ca, K, and Mg
- Robarge et al. (1989) found elevated foliar Al

Atmospheric Deposition

- Decreases in Ca lead to increases in dark respiration (MacLaughlin et al. 1991)
- High S dep causes needle necrosis, early senescence and defoliation (Jacobson et al. 1990).
- Reduction in leaf chlorophyll content
- Lack of winter hardening (Adams and Eager 1992)

Multiple Stresses

What is the relative importance of these factors on growth?

Aber et al. 2001
Conservation

- Spruce-fir community rich in rare and endemic species
- Several species at risk of extinction
 - Northern Goshawk
 - Carolina Flying Squirrel
 - Spruce Fir Moss Spider
 - 5 more invertebrates
 - 12 plants
- Two endemic salamanders
 - Pygmy salamander
 - Imitator salamander

Southern Appalachian Man and the Biosphere 1996

Christmas!

- NC xmas tree industry generates ~$100 million annually
- Most of this is from plantation grown Fraser fir
- Maintenance of genetic diversity in wild pop.
- Identification of stress tolerant individuals -> heartier plantation stock

Potter et al. 2005
Research Objectives

- Determine relative importance of effects of temperature, water availability, soil pH, sulfur and nitrogen deposition and soil Ca:Al ratios on Fraser fir health.
- Develop a mechanistic model for determining moisture availability for trees at a given site.
- Identify stress tolerant Fraser fir individuals, and determine if there is an underlying pattern in health due to age or geographic location.
- Test whether hypothesized change in forest species/composition is occurring, and if so, if it's correlated with N deposition, BWA disturbance intensity or climactic parameters (temperature and moisture).
Long-term Monitoring

- Established in 1990
- 20m x 20m plots
- Not previously logged or burned

<table>
<thead>
<tr>
<th>≥ 65% of over-story Fraser fir living</th>
<th>≥ 65% of over-story Fraser fir dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Live Fir</td>
<td>Pure Dead Fir</td>
</tr>
<tr>
<td>≤ 35% of over-story Fraser fir</td>
<td>Mixed Live Fir</td>
</tr>
<tr>
<td>Mixed Live Fir</td>
<td>Mixed Dead Fir</td>
</tr>
</tbody>
</table>

- 37 plots total

Long-term Monitoring

- All live and dead over-story trees (>5 cm) were counted by species, tagged, and DBH
- 5 co-dominant firs per plot cored and aged in 2000
- BWA and crown dieback noted
- growth rates
- mortality and recruitment rates
- species richness
- understory was also sampled

How do we measure tree health?

Photosynthesis
(Shoot health)

Transpiration
(Root health)

Growth

Nutrients

Soil moisture
Photosynthesis and Transpiration

- Measure with Intra-red Gas Analyzer (IRGA)
- \(A_{\text{net}} \) does not decline until after 6 min (Meng and Arp 1993)

Leaf Pigments

- Leaf Chlorophyll A and B content
- Leaf Carotenoid Content
- extract pigments with acetone
- measure light absorbance in a spectrophotometer at 480, 663, and 645
- formulas developed by Sestak et al. (1971) and Davies (1976)

Non Structural Carbohydrates

- Stem tissue obtained with Increment Borer
- Root Samples also collected
- Methods developed by Chow and Landhäusser (2004)
Environmental Variables

- N and S deposition (Weathers and Lindburg Model 2006)
- Temperature
- Mechanistic Model of Soil Moisture Availability
 - Precipitation
 - Infiltration rates
 - Soil depth
 - Soil saturation levels

Cai et al. (2011) show significant differences between A and B horizons
- 8 soil cores per plot < 25 cm depth
- Soil parameters
 - pH (1:1 soil:water method)
 - Ca:Al (ICP-MS)
 - Macro- and Micronutrients (ICP-MS)

Statistical Methods

- Multivariate Regression
 - Pigments, A_{max}, TE, TNC = Temp, H$_2$O availability, soil pH, Ca:Al ratios, Nutrients, N and S dep
 - McHenry’s Algorithm for variable selection
 - Jack-knife to test for model predictability
- PCA: health
 - Age, Geographic Location
 - Identify robust individuals
- DA: Changes in Hardwood Percentages
 - N dep, climactic variables, historical BWA disturbance intensity
Acknowledgments

- National Park Service
 - Kristine Johnson
 - Tom Remaley
- Dr. Jennifer Franklin
- Dr. Amy Johnson, Dr. Jason Henning, Dr. Dave Buckley
- 2010 and 2011 Field Crews
 - Joshua Albritten
 - Joe Hughes
 - Jacob Hilton
 - Becca Smith

References

