

Introduction

Acorns are a staple of winter diets of many wildlife species

- Acorn crop influences wildlife populations
- white-tailed deer
- black bear
- ruffed grouse
- gray squirrels
- Oaks are economically and ecologically important
- 7th largest standing timber volume (3.2% of all volume)
- 10th most abundant tree species (1.9% of all trees)

Introduction

Oak masting is variable

- Among species (*Erythrobalanus* vs. *Leucobalanus*)
- Year to year (masting cycles and weather)
- Site to site (topography and stand conditions)
- Tree to tree (genetics, size, and age)

Introduction

Previous literature has focused on red oaks

- Thinning may increase mast production in red oaks
- Fertilizing oaks is often suggested in popular literature, but has not been tested
- White oaks are the most common oak in the eastern US
- Commonly believed that white oak acorns are preferred by some species of wildlife

Objectives

- Determine baseline acorn production potential of individual white oaks
- Determine the effects of fertilization and thinning on white oak acorn production

Study site

Chuck Swan SF and WMA 30 km N of Knoxville Elevation: 310 – 520 m 24,444 acres; 92% forested Mixed hardwoods 130 cm annual rainfall Well drained, acidic soils

Data collection

120 white oaks

- dominant / codominant
- DBH 12.7 32.2 inches

Three, 1 m² baskets per tree

- Acorns collected biweekly
- Sept Nov
- DBH and crowns measured

Data collection

- Acorn soundness estimated by float-testing
- Marked acorns returned to monitor depredation in baskets
- Up to 50 acorns from each tree dried and weighed to estimate biomass in 2008

Proportion of acorns produced by production class, Chuck Swan SF, 2006-2010

Production classes

Production Characteristics, Chuck Swan SF, 2006 – 2010

	2006	2007	2008	2009	2010
Poor Trees	78%	69%	50%	67%	47%
Poor Trees: % of acorns	20%	6%	18%	17%	11%
Excellent Trees	11%	13%	14%	14%	18%
Excellent Trees: % of acorns	62%	81%	36%	53%	55%

Identifying strong producers

Identifying strong producers

When should we monitor trees to predict production class?				
	Trees per production class	% Correct strong years	% Correct poor years	
Excellent	14	75%	14%*	
Good	35	36%	11%	
Moderate	22	50%	14%	
Poor	49	87%	59%	
Overall		64%	32%	
*7 out of 14 excellent producers misidentified as poor producers				

Management Implications

- To increase mast production monitor individuals first
- When thinning for wildlife: - remove spp. with low wildlife value first - then poor producers
- Retain strong producers and a diversity of spp.

Management Implications

Monitoring Options:

- fall surveys for acorns
- spring surveys for seedlings

FORESTRY

Acknowledgements

Project Team: Dr. Craig Harper, Michael McCord, Seth Basinger, Ashley Unger

Logistics: Neal White, Brook Smith, Theresa Harper

Our many wonderful volunteers!

References

- Eiler, J.H., W.G. Wathen, and M.R. Pelton. 1989. Reproduction in black be 53 (2):353–360.
- Greenberg, C.H., and B.R. Parreszi. 2002. Dynamics of acom production by five species of southern Appallachian calks. Pages 149-172 (jj W.J. McSh and W.M. Haaly, (eds.), Quk Forest Ecosystems: Ecology and Management for Wildlife. Johns Hopkins University Press, 432p.

orestry 14(3):155 ent 116:1-11.

- Healy, W.M. 1997. Thinning New England oak stands to e
-, A.M. Lewis, and E.F. Boose. 1999. Variation of red oak accord
- Perty, A. W. and P. A. Tim. 2003 initial effects or reproduction curing realments on residual naid mast production in the Quarm Journal of Applied Forestry 27(4):253–258.
 P. A. Tance, and D. G. Petiz. 2004. The relationship between basal area and bard modulation in the Quark
- 55-59 in Ouachta and Ozark Mountains symposium: ecosystem management research. Gudlin, J.M. ed. USDA Forest Service GTR SRS:74:3
 Nixon, C.M., McClain, M.W., and R.W., Donohoe. 1975. Effects of hunting and mast cross on a soulirel population. Journal of Widtle Manage
- Norman, G.W. and R.L. Kirkpatrick. 1984. Foods, nutrition, and condition of ruffed grouse in southwestern Virginia. Journal of Wildlife Ma 48:183–197.
- sharp, W.M. 1968. Evaluating mast yields in the caks. The Pennsylvania State University Agricultural Experiment Station Bulletin 635 22 p.
- _____, and V.G. Sprague. 1967. Flowering and fruiting in the white oaks. I. Staminate fit
- Wentworth, J.M., Johnson, A.S., and P.E. Hale. 1992. Relationsh Southern Journal of Applied Forestry 16:5–8.

