Effect of FACE on Wood Chemistry (Free Air Carbon-dioxide Enrichment) Research Object and Plan Center for Renewable Carbon Forestry, Wildlife and Fisheries University of Tennessee M.S. Candidate Anna "Keonhee" Kim

CO₂ concentration has risen 35% since industrial revolution. *Natural factors *Human activities *Industrial pollutions

What is FACE?

- 1. Free-Air Carbon dioxide Enrichment (FACE) method that raises the concentration of CO_2 in a specified open area and allows the response of plant growth to be measured.
- 2. A typical FACE plot is circular and surrounded by a ring of pipes that release ${\rm CO_2}$ or air enriched with ${\rm CO_2}$ at vertical intervals.

*Global project *Can provide perhaps the best estimate of how plants and ecosystem will respond in a future high CO₂ world.

Objectives

The goal of this research is to assess the effects of elevated carbon dioxide on various tree species such as sweetgum, aspen, paper birch.

- Compare chemical properties of sweetgum, birch, and aspen wood harvested from control and elevated carbon dioxide treatments of two FACE experiment sites.
- 2. Changes in wood structural and chemical properties after 10-year of CO_2 treatments.

Justification

- Trees that have developed for 10 years in a FACE
 very rare opportunity to assess long term changes in real
 open field
- Sweetgum, Aspen, Birch and Loblolly Pine
 important commercial species also being studied as a bio energy crops because of their high productivity.
- Thus it is important to understand how future conditions will influence strength properties, cell wall structure, and chemical composition.

Research results from literatures

- After 3 years of treatment of paper birch (Aspen FACE)
- Annual ring width, and concentrations of extractives and starch were
 Concentrations of cellulose and gravimetric lignin were decreased (Kostiainen 2006 Global Change. Biology. 12,1230)
- After 5 years of treatment (Aspen FACE)
- Aspen : decreased uronic acids (constituents of hemicellulose) and tended to increase stem diameter
 Paper birch : decreased starch concentration (Kostiainen 2008 Tree Physiology 28,805)
- A dense poplar plantation was exposed to a CO₂ of 550 ppm for 3 growing season. (EURO FACE)
 Aboveground biomass increased by 15 to 27%
 Belowground biomass also increased by 22 to 38%
 No effect of CO₂ on stem wood density (Calfapietra 2003 Tree Physiology 23,805)

Hypothesis

Elevated CO₂ concentration in atmosphere will affect wood properties.

Site Description

There are three FACE experimental systems involving forest trees in the USA.

1.DUKE FACE site

-Loblolly pine plantation
-Duke University forest near Durham, NC

-4 Elevated CO₂ plots
(200ppm+ambient CO₂)
4 Control plots (ambient CO₂) -Operation started Jun 1994

Site Description

There are three FACE experimental systems involving forest trees in the USA.

2. Aspen FACE site

- Aspen FACE Site

 -Aspen, Paper birch, Maple
 -Rhinelander, WI
 -12 treatment "Rings"
 control
 elevated CO₂ (560ppm)
 elevated O₃ (ambient O₃ x 1.5)
 elevated CO₃+O₃
 -Trees planted in 1997
 -Treatment initiated in 1998

Site Description

There are three FACE experimental systems involving forest trees in the USA.

3.ORNL FACE site

- -Sweetgum plantation
 -Oak Ridge, TN
 -2 plots of elevated CO₂ (565ppm)
 3 plots of control (ambient CO₂)
 -1 year old sweetgum planted in 1988
 -CO₂ treatment initiated in 1998

* ORNL FACE - Sample harvesting (July,2009)

Sample Preparation

- In preparation for chemical analyses, the bark, phloem and cambium were removed from the wood cookies.
- The cookies were divided by 4 directions and cut in 1cmdiameter block shape.
- Each sample was freeze dried, chipped and milled with 40 mesh Wiley mill which maintained cool temperature with liquid nitrogen.

Acknowledgement Primary Advisor :Dr. Nicole Labbe Center for Renewable Carbon, UT For samples : ORNL – Dr. Richard Norby & Dr. Jeff Warren Aspen – US Forest Service Northern Research Station Dr. Mark Kubiske UT – Dr. Nicolas Andre, Dr. Jennifer Franklin Dr. David Harper, Lindsey Kline Financial Support : Forestry, Wildlife and Fisheries UT USDA – Wood Utilization Research US-Forest Service, Southern Research Station

