

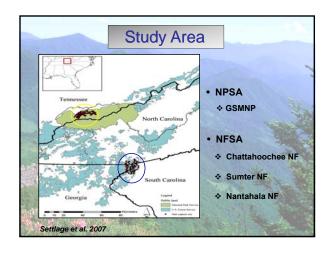
Background

- American black bear (Ursus americanus)
- · Severe population decline
 - * Fragmentation and habitat loss
 - ❖ Overharvest
- Great Smoky Mountain National Park (GSMNP)
 - * Population increases
 - Possible decline in late 1960s
- Southern Appalachian Black Bear Study Group (SABBSG) founded

Background

"Efficacy of DNA sampling to monitor population abundance of black bears in the southern Appalachians"

- Summer of 2003
- Hair snares
- 129 individuals identified in National Park Study Area (NPSA)
- 60 individuals identified in the National Forest Study Area (NFSA)



Settlage 2005, Settlage et al. 2007

Last genetic study completed in 1985 (Wathen et al. 1985) Increasing fragmentation and encroachment Regional management plan

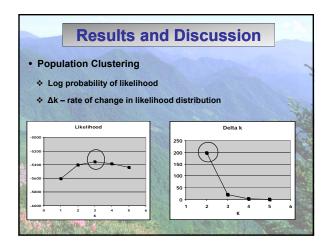
Objectives 1) Estimate within-population genetic variation 2) Estimate among subpopulation genetic differentiation 3) Estimate gene flow between subpopulations

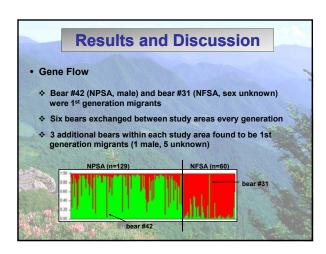
DNA extraction (USGS-Leetown Science Center) 9 Microsatellite loci (Paetkau and Strobeck 1994, Paetkau et al. 1995) Group of molecular markers found in nuclear DNA Heterozygous or homozygous

	A (1)
	Assumptions
• H	ardy-Weinberg equilibrium
	Markov Chain Monte Carlo (MCMC)/Fisher's exact test
	Program ARLEQUIN (Excoffier et al. 2005)
·L	inkage disequilibrium
*	Non-random mating, genetic drift, recent admixture or sample size
*	Sequential Bonferroni adjustments
*	Program ARLEQUIN
or all	200
144	

Clustering

- Program STRUCTURE 2.2 (Pritchard et al. 2000)
- Individual's probability of belonging to a sampled population
- * Population clusters (k) 1-5
- * Admixture model with correlated allele frequencies
- ❖ Burn-in and likelihood estimation run- MCMC 100,000 iterations
- Highest value of the log probability
- ❖ Δk rate of change in likelihood distribution (Evanno et al. 2005)


Gene Flow


- Slatkin's linearized F_{st} (Slatkin 1995)
- Program STRUCTURE 2.2
- Program GeneClass2 (Piry et al. 2004)
- Estimate likelihood that a genotype originated from within the population where the individual was sampled
- Re-sampling to generate critical values for rejecting the possibility that an individual was born in a population where it was sampled

Results and Discussion

- Hardy-Weinberg equilibrium
 - ❖ MU23 (p = 0.040) for the NPSA
 - G10B and MU23 (p = 0.043 and p = 0.044) for the NFSA
 - No significance after adjustments
- Linkage disequilibrium
 - * Association among 3 of 36 pairs of loci for the NPSA
 - Association among 3 of 36 pairs of loci for the NFSA

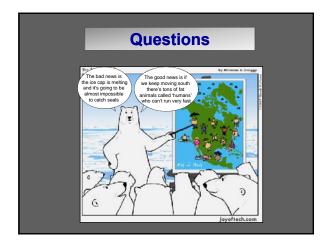
Implications

- High genetic diversity and gene flow within and between the NPSA and the NFSA, likely due to contiguous habitat
- As human encroachment and fragmentation occurs, understanding how populations are connected will allow managers to focus mitigation efforts
- This study provides baseline information on the genetic connectivity between 2 distant subpopulations of black bears

Acknowledgments

Dr. Frank T. van Manen

Dr. Ben Fitzpatrick


Katie Settlage and technicians

Jared Laufenberg

Bear Lab

Literature Cited

- Excoffier, L., G. Laval, and S. Schneider. 2005. ARLEQUIN version. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:47–50.
- Evanno, G., S. Regnaut, and J Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14:2611–2620.
- Paetkau, D., W. Calvert, I. Stirling, and C. Strobeck. 1995. Microsatellite analysis of population structure in
- _____, and C. Strobeck. 1998. Ecological genetic studies of bears using microsatellite analysis. Ursus 10:299–30
- , and C. Strobeck. 1996. Ecological generic studies of bears using microsatelinte analysis. Orsus 10.299–30
- Pritchard, J.K., M. Stephens, and P. Donnelly. Inference of population structure using multilocus genotype data. 2000 Genetics 155:954–959.
- Settlage, K.E. 2005. Challenges of DNA-based mark-recapture studies of American black bears. Thesis, University
 of Tennessee, Knowylle Tennessee, USA
- Slatkin, M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics
 (20.457, 462)
- Wathen, W.G., G.F. McCracken, and M.R. Pelton. 1985. Genetic variation in black bears from the Great Smoky Mountains National Park. Journal of Mammalogy 66:564–567.

