Assessing Anthropogenic and Natural Disturbance: Forest Response to Clearcut and Tornado Disturbances

Jonathan McGrath
Department of Forestry, Wildlife and Fisheries
University of Tennessee

Outline
Introduction and Justification for Research
Research Objective
Methods
Results and Discussion
Management and Research Considerations

Background Information
February 21, 1993: F3 tornado hits Oak Ridge, TN
UT Forest Resources Research and Education Center (FRREC)
- 352 total acres damaged
- 249 acres heavily damaged

Incomplete Stand Scale Disturbance
Background Information

1989: Clearcut on Chestnut Ridge
- Site prep/Mixed pine-HW stands
- Planted EWP and LP on 20' x 20' spacing

4 Treatments
- 5 – 1 ac. Replicates
 - Cut & Burn
 - Herbicide & Burn
 - Commercial Clearcut
 - Silvicultural Clearcut

Stand Initiating Disturbance

Background Information

- **Tornado**
 - Heavy Incomplete Stand-Scale Dist.
 - Residual overstory trees standing

- **Clearcut**
 - Stand Initiating Dist.
 - No residual trees

Justification for Research

Natural vs. Anthropogenic disturbance: What’s the difference?
- Public Lands: Forest Mgmt. → Ecosystem Mgmt.
- Forestry = Disturbance Engineering

Similar site/time
- 4 year difference between disturbance
- Adjacent stand/Similar site conditions
Research Objectives

Quantify stand characteristic differences that exist for:

- Vegetation
 - Species Composition
 - Diameter Distribution
 - Density
 - Diversity
- Coarse Woody Debris
 - CWD Density
 - CWD Volume
 - CWD Biomass

Methods – Study Site

- UT Forest Resources Research and Education Center (FRREC)
- Clearcut
- Silvicultural Clearcut 1-acre blocks
 - No EWP survival
 - Little LP survival
Methods – Plot Design

- **Tornado**
 - Layout by transect lines
 - \(n = 27 \)

- **Clearcut**
 - 2 plots per 1-acre block
 - \(n = 10 \)
 - If LP present, shift to EWP side of block

Methods – Vegetation

- **Overstory:**
 - Trees \(\geq 4.5'' \) DBH

- **Midstory**
 - Trees 1.5'' to 4.4'' DBH

- **Understory**
 - Woody \(\geq 4' \) tall
 - Woody < 4'
 - Herbaceous

Methods – CWD

- **Line Intersect Method**
 - (Waddell 2002)
 - Measurement Requirements
 - Min. diameter = 5'' (12.5 cm)
 - Min. length = 3.3' (1 m)
 - Structural integrity
Methods – CWD

Diameter:
- Large end
- Small end
- Log length
- Decay class (1-5)

Methods – Analysis

Importance Values (IV)
- Rel. Dom. + Rel. Dens. = 200
- Shannon Diversity (H')
- CWD density, volume, biomass
- Non-metric Multidimensional Scaling (NMDS)

Mann-Whitney Analysis

Analysis of Similarity (ANOSIM)

α = 0.05

Results & Discussion

Species Composition: Importance Values

<table>
<thead>
<tr>
<th>Species</th>
<th>BLCH</th>
<th>BLGU*</th>
<th>DOWO</th>
<th>HICK</th>
<th>REBU*</th>
<th>Red Oaks</th>
<th>REMA</th>
<th>SMSU</th>
<th>SOWO</th>
<th>SUMA*</th>
<th>White Oaks</th>
<th>WHPI</th>
<th>YEPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornado</td>
<td>shade tolerant spp.</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing species composition and importance values.
Results & Discussion

Species Composition/Density: TORNADO

<table>
<thead>
<tr>
<th>Treatment</th>
<th>YEPO</th>
<th>REMA</th>
<th>BLCH</th>
<th>SOWO</th>
<th>WO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornado (%</td>
<td>216</td>
<td>187</td>
<td>117.4</td>
<td>98.1</td>
<td>86.3</td>
<td>763</td>
</tr>
<tr>
<td>(%)</td>
<td>28.4%</td>
<td>24.5%</td>
<td>15.4%</td>
<td>7.6%</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td>Clearcut (%)</td>
<td>388</td>
<td>396</td>
<td>158</td>
<td>186</td>
<td>126</td>
<td>1377</td>
</tr>
<tr>
<td>(%)</td>
<td>24.2%</td>
<td>28.7%</td>
<td>11.5%</td>
<td>13.5%</td>
<td>9.2%</td>
<td></td>
</tr>
</tbody>
</table>

1. REMA stump sprouts
2. YEPO dominance
3. WO persistence

Results & Discussion

Species Composition/Density: CLEARCUT

<table>
<thead>
<tr>
<th>Treatment</th>
<th>YEPO</th>
<th>REMA</th>
<th>BLCH</th>
<th>SOWO</th>
<th>WO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornado (%</td>
<td>216</td>
<td>187</td>
<td>117.4</td>
<td>98.1</td>
<td>86.3</td>
<td>763</td>
</tr>
<tr>
<td>(%)</td>
<td>28.4%</td>
<td>24.5%</td>
<td>15.4%</td>
<td>7.6%</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td>Clearcut (%)</td>
<td>388</td>
<td>396</td>
<td>158</td>
<td>186</td>
<td>126</td>
<td>1377</td>
</tr>
<tr>
<td>(%)</td>
<td>24.2%</td>
<td>28.7%</td>
<td>11.5%</td>
<td>13.5%</td>
<td>9.2%</td>
<td></td>
</tr>
</tbody>
</table>

1. REMA stump sprouts
2. YEPO dominance
3. WO persistence
4. BLCH/SOWO: fewer small diameter trees

Results & Discussion

Diameter Distribution

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>Density (TPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornado</td>
<td>763</td>
</tr>
<tr>
<td>Clearcut</td>
<td>1377</td>
</tr>
</tbody>
</table>

Diameter Distribution

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>Density (TPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tornado</td>
<td>763</td>
</tr>
<tr>
<td>Clearcut</td>
<td>1377</td>
</tr>
</tbody>
</table>
Results & Discussion

Shannon (H') Diversity

<table>
<thead>
<tr>
<th></th>
<th>Tornado</th>
<th>Clearcut</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>US > 4 ft.</td>
<td>0.663</td>
<td>0.735</td>
<td>0.62</td>
</tr>
<tr>
<td>MS</td>
<td>1.337</td>
<td>1.478</td>
<td>0.20</td>
</tr>
<tr>
<td>OS*</td>
<td>1.505</td>
<td>1.995</td>
<td>0.01</td>
</tr>
<tr>
<td>MS/OS</td>
<td>1.785</td>
<td>1.646</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Results & Discussion

Coarse Woody Debris

<table>
<thead>
<tr>
<th>CWD attribute</th>
<th>Tornado</th>
<th>Clearcut</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (ft³/ac)*</td>
<td>635.9</td>
<td>155.2</td>
<td>0.0057</td>
</tr>
<tr>
<td>Density (logs/ac)*</td>
<td>108.1</td>
<td>42.4</td>
<td>0.0129</td>
</tr>
<tr>
<td>Biomass (tons/ac)*</td>
<td>0.666</td>
<td>0.089</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

- 4.1 x greater from blown down trees
- 1.5 x greater from tree tops
- 7.5 x greater

Conclusions

Tornado
- Shade tolerant
- Lower stem density
- Complex, stratified structure
- More CWD

Clearcut
- Shade intolerant?
- Greater stem density
- Even-aged structure
- Less CWD
Management Considerations

Vegetation

<table>
<thead>
<tr>
<th>Tornado</th>
<th>Clearcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incomplete stand-scale disturbance – Multi-aged stand</td>
<td>Stand initiating disturbance – Even-aged stand</td>
</tr>
<tr>
<td>Complex stage of development – Accelerated succession</td>
<td>Stem exclusion stage development – Set back succession</td>
</tr>
<tr>
<td>Residual canopy causes:</td>
<td></td>
</tr>
<tr>
<td>– Lower stem density</td>
<td></td>
</tr>
<tr>
<td>– More shade tolerant species composition</td>
<td></td>
</tr>
<tr>
<td>(Miller et al. 2006)</td>
<td></td>
</tr>
</tbody>
</table>

Residual canopy causes:
- Lower stem density
- More shade tolerant species composition

(Miller et al. 2006)

Coarse Woody Debris

<table>
<thead>
<tr>
<th>Tornado</th>
<th>Clearcut</th>
</tr>
</thead>
<tbody>
<tr>
<td>CWD composition: large and small logs</td>
<td>CWD composition: tree tops only</td>
</tr>
</tbody>
</table>

Larger logs → longer decay rate (Stevens 1997)
- Longer nutrient cycling (Mattson et al. 1987, Hunter 1990)

Research Considerations

Limitations
- Temporal differences exist
- Tornado → high variability
- Clearcut → less area/fewer plots

Basically...comparing two different things!

Effects
- Increased probability of a Type II error
- Detected differences are more powerful
Acknowledgements

Advisor: Dr. Wayne Clatterbuck
Committee: Dr. Jen Schwietzer, Dr. Callie Schwietzer, and Richard Evans
Ann Reed
John Mulhouse
Volunteers: Amy Morgan, Kelly Frady, Matthew McCollister