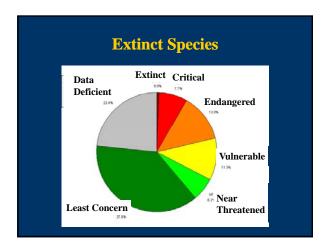


Outline

- Current status of declining amphibian populations
- Amphibian biology characteristics making them susceptible to declines
- Direct anthropogenic (human caused) effects on amphibian declines
- Indirect effects on amphibian declines
- Future directions for the conservation of amphibians

Current Status of Amphibian Populations Amphibian Species Diversity


Current Status of Amphibian Populations

- 32% of amphibians are threatened (1,896 spp.)
 - **12%** birds, **24%** mammals
- 43% of populations are declining
 - 1% are increasing
- At least 34 species are extinct another 130 haven't been seen in years

Global Amphibian Assessment

Amphibian Biology

- "double life" aquatic larvae, terrestrial adult
- Ectotherms with permeable skin that must remain moist
 - Respiration & osmoregulation
- Eggs lack shells or protective membranes

Ecological Applications 18: 724-734

Anthropogenic Effects on Amphibian Declines

Direct

HABITAT DESTRUCTION

Chemical pollution of water Road disturbance Introduced amphibian and fish species

Indirect -

—

Global warming UV-B radiation Acid precipitation Pathogen exposure

Habitat Destruction

#1 Cause of Amphibian Decline Majority of amphibians depend on forests

- Expanding agriculture
- Logging
- Road construction
- Species richness positively correlated with forest cover
 - Importance of loss of habitat
 - Effect on metapopulation dynamic = increased predation
 - Forested buffers protect wetlands from contaminants

Can. J. Fish. Aquat.Sci. 60: 1078-1094

Chemical Pollution of Water

- · Pesticides and herbicides
 - Break down slowly, gather in sediment, bioaccumulate in amphibians
 - Herbicide Roundup killed 98% of tadpoles within
 3 weeks as a result of direct mortality
- Fertilizers
 - Mortality rate was 85% among Southern Leopard frog tadpoles exposed to nitrate
 - Nitrate delayed time to metamorphosis from 58 days to 93 days

Ecological Applications 15: 1118-1124, Arch. Environ. Contam. Toxicol. 53: 639-646

Chemical Pollution of Water

- hea I
 - All tadpoles exposed to 3940 mg/kg or higher died within 5 days
 - Skeletal defects were present at 75 mg/kg and higher
- · Road deicing salt
 - Increased conductivity in pond water
 - Survival of embryonic spotted salamanders only 3% at 3000 μS
 - Embryonic period = 5-6 weeks, duration of exposure is factor in survival

Ecological Applications 18: 724-734, Arch. Environ. Contam. Toxicol. 51: 458-466

Road Disturbance

- Discourage dispersal
 - Return rates reduced 51% in red-backed salamanders
- Direct mortality
- Traffic noise interferes with vocalizations in anurans
 - Decreased response time and ability to locate male in female grey treefrogs
- Introduce contaminants
 - Road deicing salt, gas and oil
- Habitat destruction

Animal Behaviour 74: 1765-1776, Conservation Biology 19:2004-2008, Biological Conservation 138: 399-411

-	

Introduced Species

- · Brown and rainbow trout
 - In Australia, predation on native Spotted tree frog tadpoles was higher than native fish species
 - Rainbow trout reduced survival of tadpoles by 50% in one week or less
- Bullfrogs
 - $\ Act \ as \ predators \ and \ competitors$
 - Reduced survival of threatened CA red-legged frog tadpoles to 5%

Biological Conservation 100:187-198, Conservation Biology 13: 613-622

Indirect Anthropogenic Effects

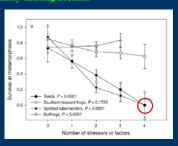
- Global Warming
 - Increase in temperatures due to build up of greenhouse gases
 - Alters habitat
- UV-B exposure
 - Ozone depletion
 - Reduced hatching success and increased rate of embryonic deformities
- · Acid precipitation
 - Decrease in pH from SO₂ and NO₂ deposits
 - Direct mortality, reduced hatching

Conservation Biology 14: 277-282

Indirect Anthropogenic Effects

- Chytrid fungus
 - Cool temperatures, high elevations
 - Occurs in keratinized tissues
 - Creates extra layers of skin, limb paralysis
- Ranavirus
 - Widespread, all elevations
 - Mostly affects larvae
 - Emaciation, toxicosis, heart failure
- Parasites
 - Trematodes Extra/missing limbs
 - Nematodes Decreased survival, slower growth
 - Cestodes Cavities in muscle, loss of use of legs

Science 284: 802-804, Oecologia 89: 161-165, Emerg. Infect. Diseases 5: 735-748


_	
-	

Effect of Multiple Stressors

Synergistic relationship between effects is most likely causing declines

- Multiple stressors:
- Bullfrog tadpoles

 - BluegillInsecticide carbaryl
 - Ammonium nitrate fertilizer
- Combined effects are not always predictable

Ecological Applications 17: 291-301

Why Should We Care?

- Critical to the balance of ecosystems
 - Consume algae and insects
 - Prey for snakes and other animals
- Biomedicine development
 - Anti-microbial substance in skin prevents HIV infection
- Early warning system
 - Good indicators of ecosystem health
 - Are amphibians the first to go?

SAVET

Future Directions

- Captive Breeding
 - Amphibian ARK collects critically endangered species from wild to rescue them for future release
 - Expensive, requires large amount of space
- Reintroductions
- · Non-native species removal
- Habitat restoration
 - Restore buffer zones around wetlands

What Can You Do?

- NAAMP North American Amphibian Monitoring Program
- TAMP TN Amphibian Monitoring Program
 - Volunteer organization
 - $\ \, Monitor\ vocal\ amphibians\ by\ performing\ call\ surveys\ 4x/year$
 - Contact Bob English: 615-395-4166 or email <u>ENGC205@aol.com</u>

