

Dicotyledonous vs

Monocotyledonous Plants

<u>Type I:</u> all dicots and many monocots cellulose microfibrils crosslinked with xylogucans

<u>Type II:</u> grasses and related monocots glucuronoarabinoxylans (GAXs) are the major crosslinking glycans

McCann et al., 2008

Why Atomic Force Microscopy?

Light microscope? *nanophase materials

•SEM or TEM? *radiation damage from electron

Objectives

- To quantify the effect of electron beam to anatomical and chemical structure of plant cell walls using atomic force microscopy
- To study the interaction between samples and electron beam

Materials and Methods

- Sample Preparation southern yellow pine yellow poplar switchgrass lignin cellulose
- Image Processing
- Image Analysis

>

Pretreatments

- Physical pretreatment using electron beam
- 9 energy levels: 3 of low, medium and high

Using both electron microscope and

Sterilization Alternatives

Electron Beam Radiation

Sample Preparation

- Embedding in Epoxy resin
- Polishing: Zimmermann et al., 2006

Statistical Analysis

*Factorial in CRD with sampling

Mean of cellulose aggregate width (nm)

Mean of lignin area (nm)

All tests performed at a = 0.05 using SAS® system

Acknowledgements

Asst. Prof. Dr. David P. Harper Asst. Prof. Dr. Nicole Labbé Distinguish. Prof. Dr. David C. Joy Dr. Jaewoo Kim Dr. John Dunlap TFPC staffs

