

Importance of Cattle Farming and Agricultural Wetlands to Amphibians

Herpetological Journal 9:55-63

•1.05 Million Farms

•96.7 Million Head

Research Objectives

To Determine the Influences of Cattle Access in Farm Wetlands on:

1) Relative abundance of postmetamorphic amphibians

2) Shoreline vegetation structure and composition

3) Water quality

Methods Pitfall Sampling: Captures

Measure (SVL)
Weigh
Alpha-numeric tags

Methods

Vegetation Sampling

- Vegetation Structure & Height
 Measured with graduated profile
 board
- Percent Horizontal Cover
 Ocularly estimated in a 1-m² plot
- Plant Species Richness
 Enumerated in 1-m² plot

Measured once per month Midpoint of shoreline vegetation zone along a random azimuth in 2 opposing quadrants

Methods Water Quality

Variables Measured

- Specific conductivity, temperature, dissolved oxygen and pH:
 YSI® meters
 - Turbidity:
- LaMotte® colorimeter
- Lawotte® colorn
- Ammonia nitrogen, nitrite, nitrate and phosphate:
 LaMotte® water quality testing kit

Measured every 2 weeks

Along a cardinal azimuth, 1 m from shore

Methods

Statistical Analyses

Amphibians

- <u>Response</u>: Mean total capture (unique individuals)
- <u>Effects</u>: Access Treatment, Species
 -Two-way ANOVA (Trt*Species, P<0.05)
 -Two-sample T-tests (by Species)

Vegetation & Water

•Response:

- Vegetation: Percent Vertical & Horizontal Cover, Height Water: Water Quality Parameters
- •<u>Effects</u>: Access Treatment, Month – Repeated Measures ANOVA (Monthly Trends not Presented)

Summary of Results

Green frog metamorph abundance was <u>negatively</u> associated

- Vegetation structure and horizontal cover was less in cattleaccess wetlands
- Water quality appeared to be <u>negatively</u> influenced by cattle
- Specific conductivity and horizontal cover of vegetation explained the <u>greatest variation</u> in green frog metamorph abundance.

Discussion

Horizontal Cover: (Breeding Habitat) •Breeding sites Jansen & Healey (2)

•Foraging and escape cover

Specific Conductivity: (Tadpoles)

•Fecal particulate matter & chemicals associated with OM decomposition

•Negative correlation between conductivity and Rana tadpole abundance

Hecnar & McCloskey (1996), Stumpel & van der Voet (1998)

Ammonia (NH₃): (Tadpoles)

Cattle Wetlands Sublethal Effects?

G. Krupa

>0.5 mg/L •Increase in malformations •Decrease in egg & tadpole survival

Jofre and Karasov (1999)

Conservation Implications

- Cattle may be contributing to amphibian declines
- Exclusion of cattle from wetlands and adjacent habitat
- Partially fencing cattle from wetlands and providing alternative food and water sources

Future Research & Analyses

•Egg Mass and Breed Call Surveys •Tadpole Demographics

•Data collection ongoing in 2006

Grazing Intensity Experiments
 Controlled Aquaria Experiments
 Controlled Experimental Infections

Acknowledgments

Funding:

- UT Dept. of Forestry, Wildlife and Fisheries
- Tennessee Wildlife Resources Agency

Assistance:

- Walt Hitch
- PREC Staff
- Volunteers

