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ABSTRACT

Lentic freshwater habitats in temperate regions exist along a gradient from small
ephemeral ponds to large permanent lakes. This environmental continuum is a
useful axis for understanding how attributes of individuals ultimately generate
structure at the level of the community. Community structure across the gradient
is determined by both (a) physical factors, such as pond drying and winter anoxia,
that limit the potential breadth of species distributions, and (b) biotic effects medi-
ated by ecological interactions, principally predation, that determine the realized
success of species. Fitness tradeoffs associated with a few critical traits of in-
dividuals often form the basis for species turnover along the gradient. Among
species that inhabit temporary ponds, distributions are often constrained because
traits that enhance developmental rate and competitive ability also increase sus-
ceptibility to predators. In permanent ponds, changes in the composition of major
predators over the gradient limit distributions of prey species because traits that
reduce mortality risk in one region of the gradient cause increased risk in other
regions of the gradient. Integrated across the gradient, these patterns in species
success generate distinct patterns in community structure. Additionally, spatial
heterogeneity among habitats along the gradient and the fitness tradeoffs created
by this heterogeneity may hold important evolutionary implications for habitat
specialization and lineage diversification in aquatic taxa.
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INTRODUCTION

Mechanistic approaches in ecology seek to functionally link traits of individ-
uals to higher level processes such as the dynamics of populations and mul-
tispecies interactions, determinants of species distributions, and development
and maintenance of community structure (175, 191). Studies conducted across
environmental gradients can greatly enhance our understanding of the ways in
which individual traits act to shape these higher level processes because they
can reveal patterns of concordance in species traits and species assemblages
across the changing ecological conditions of the gradients (24).

In this review we are concerned with a well-known gradient in lentic fresh-
water habitats (e.g. pools, marshes, ponds, and lakes) in temperate regions.
These habitats can be placed on an axis ranging from small, highly ephemeral
habitats to extremely large habitats that have been present for millennia (202).
Ecologists have long recognized this environmental gradient as a critical axis
along which aquatic communities are organized (17, 74, 196). Virtually every
type of animal known to inhabit freshwater is also known to have a restricted
distribution across this habitat gradient. Representatives from nearly every class
of free-living freshwater animals sort among habitats according to their perma-
nence or in relation to the distribution of predators whose own distributions are
related to permanence (Table 1). With few exceptions, however, sorting occurs
at the family level and below; most higher taxa (phyla, classes, orders) are not
restricted to particular regions of the gradient. Among the groups in which
these patterns have been quantified, species are often restricted to a subset of
habitats, while the distribution of even a single genus can encompass a large
portion of the entire range of available habitats (Figure 1). These patterns imply
that overall body plan differences associated with higher order taxonomic clas-
sification do not usually represent constraints to use of different habitat types,
but if constraints do exist, they occur among species, genera, and families.

The integration of restricted species distributions across the gradient leads
to highly characteristic shifts in community structure (17, 23, 32, 67, 89, 149,
154, 195). Our thesis is that restricted species distributions and turnover in
community composition along the gradient result largely from a relatively few
important constraints on the life-styles of aquatic animals. As developed below,
certain attributes of organisms such as body size, developmental rate, activity,
and life history form axes for fitness tradeoffs across the habitat gradient. In
each case, substantial evidence suggests that success at one point on the gradient
entails having a phenotype that will hinder performance at other points along
the gradient. We argue that changes in community structure along the gradient
are best understood in terms of the critical fitness tradeoffs that determine a
species’ pattern of performance among habitats. Elucidating these mechanistic
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Table 1 Free-living animals of lentic freshwater habitats whose distributions are
known to vary with frequency of habitat drying or predator distribution. Representative
references are given for each taxon.

Taxon Common name Permanence Predators Reference

Proifera Sponges x 200
Turbellaria Flatworms x 196
Nematoda Roundworms x 7
Rotifera Rotifers x 139
Bivalvia Clams x x 90, 133
Gastropoda Snails x x 181, 18, 19, 86
Hirudinea Leeches x x 196, 94
Oligochaeta Worms x 196
Arachnida Mites x x 196, 75
Anostraca Fairy Shrimp x x 196, 89
Cladocera Water Fleas x x 17, 196, 139, 89
Conchostraca Clam Shrimp x 9, 196, 139, 89
Notostraca Tadpole Shrimp x 51, 139
Copepoda Copepods x 22, 6, 89
Amphipoda Amphipods x x 196, 188
Decapoda Crayfish, Shrimp x 196
Isopoda Isopods x 196
Ostracoda Seed Shrimp x 196
Anisoptera Dragonflies x x 196, 95
Coleoptera Beetles x x 80, 41
Diptera True Flies x x 36, 91, 179, 182
Ephemeroptera Mayflies x 196
Hemiptera True Bugs x x 27, 157
Megaloptera Alderflies x 200
Trichoptera Caddisflies x 114
Zygoptera Damselflies x x 196, 95
Osteichthyes Fishes x 127
Anura Frogs x x 23, 151
Caudata Salamanders x x 23

links between individual- and community-level processes provides a funda-
mental understanding of how constituent species shape community structure
and, conversely, how community structure may influence the distribution and
evolution of species.

A Schematic Model
Changes in community structure along this freshwater habitat gradient are de-
termined by the coupled effects of (a) physical environmental factors that limit
the potential breadth of species distributions and (b) biotic interactions that
determine the realized success of species. In Figure 2, we present a schematic
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model of community structure across the gradient. The model depicts key nega-
tive effects, both biotic and abiotic, that underlie significant shifts in community
structure across the gradient. Bold arrows indicate strong effects and thinner
arrows represent weaker effects.

The physical environment forms the template along which communities de-
velop on the gradient. At the broadest scale, physical factors constrain the
potential pool of community members by eliminating species unable to cope
with the physical stress. In temporary pond habitats, the need to cope with pe-
riodic drying imposes severe constraints on a species’ behavior, development,
and life history, and only those species able to deal with drying are successful

Figure 1 Distribution ranges of Zygoptera (95) and Notonecta (27) across habitats with and with-
out predatory fish, and Hemiptera (157) and Anura (23) across habitats that differ in hydroperiod.
Genera and families are distributed across a broad region of the gradient, but individual species are
often restricted to a narrow region.
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in these habitats (196). Importantly, this constraint prevents colonization by
many key predators found elsewhere on the gradient because fish and impor-
tant predatory invertebrates such as dragonfly larvae are highly susceptible to
pond drying. Temporary pond habitats thus often contain fewer predators than
do more permanent habitats (149, 208). In shallow permanent ponds, physi-
cal stresses such as low oxygen levels during periods of ice cover can impose
heavy mortality on fish (28, 127, 177). Thus well-developed fish communities
are often restricted to relatively deep permanent habitats (177).

While species-specific tolerances to physical factors determine the pool of
species potentially able to exist in any habitat, biotic interactions determine the
actual species composition of each community. Strong negative interactions,
through either predation or competition, may prevent survival of affected pop-
ulations, and thus restrict the distribution of these species to a narrow range of
the gradient (10, 17, 95, 184). Weaker negative interactions may limit a pop-
ulation’s density but do not cause the population to be eliminated (172, 189).
It is the relative strengths of biotic interactions, under the backdrop of physical
constraints, that shape community structure on the gradient.

This interplay of physical and biotic factors along the gradient tends to pro-
duce distinct, alternative community types (delineated by boxes in Figure 2),
determined largely by hydroperiod and the key predators (if any) able to survive
in the habitat. Temporary habitats are characterized by very active and rapidly
developing species and few predators (149, 208). Permanent but fishless habi-
tats have communities composed of large predatory invertebrates, such as larval
dragonflies and pelagic Diptera, and large, moderately active prey species (95,
186, 212). In permanent habitats that contain fish, fish are often key preda-
tors, and animal species at lower trophic levels are small-bodied (186, 212) and
inactive (96, 165). Between these community types are distinct transitions in
community structure. We refer to the transition between temporary habitats
and permanent fishless habitats as the permanence transition and the transition
between permanent fishless habitats and habitats with fish as the predator tran-
sition. These transitions and the alternative community types they form arise
on the gradient because strong interactions across transitions lead to selective
elimination of species, while weaker interactions within community types do
not.

To be sure, the model presents an idealized and highly simplified view of the
habitat gradient, and numerous additional complexities and mitigating factors
are certainly important. Nonetheless, we believe the model captures essen-
tial features of an important and prominent pattern among aquatic systems.
This perspective on the structure of freshwater habitats is not new (145, 208,
212). Our goal here is to emphasize the insights gained by evaluating species
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distributions and community structure in light of the effects of individual traits
and key fitness tradeoffs expressed along the habitat gradient.

THE PERMANENCE GRADIENT

In this section we consider ponds that range from extremely temporary through
those that may be permanent for years at a time, but which do not contain fish.
Within these habitats, what factors determine the shape and limits of a species’
distribution? We argue that both pond hydroperiod and predation are prevalent
influences with important consequences for a species’ distributional pattern that
may be understood through a mechanistic analysis of key phenotypic traits.

Permanence and Developmental Rate
Temporary waters have often been considered distinct from permanent ponds
(196, 200). Much of the early literature on temporary pond fauna was concerned
with the question of survival in an ephemeral aquatic environment (7, 9, 51,
74, 138, 196). This focus on the adaptations to life in temporary ponds is
understandable. The existence of a dry phase presents an obvious challenge
to any “aquatic” animal. The persistence of these organisms requires that they
survive the dry period in situ, migrate to other aquatic habitats, undergo a
transition to a terrestrial phase, or recolonize following extinction. All of these
strategies are found among temporary pond fauna (196, 200).

While there is a great variety of particular adaptations to ephemeral ponds,
most resident species persist by reaching some critical developmental stage prior
to pond drying (51, 200). Examples include holometabolous and hemimeta-
bolous insects and amphibians that undergo metamorphosis into a terrestrial
form. In addition, many invertebrates (e.g. cladocera, clam shrimp, copepods,
fairy shrimp, mayflies, seed shrimp, tadpole shrimp) must reach adulthood and
then produce encysted eggs that can endure the dry phase within the pond
basin (200). For these groups, hydroperiod represents a maximum limit on
development time. That this limit is frequently an active constraint on the
performance and distribution of freshwater organisms is suggested by numer-
ous reports of catastrophic mortality (34, 67, 108, 116, 131, 142, 170) and
even local extinction (23, 67) associated with pond drying events. Experiments
directed at the role of hydroperiod have been of two primary types. A num-
ber of artificial pond experiments have been conducted in which hydroperiod
is imposed as a treatment (e.g. 136, 141, 197). In addition, several experi-
ments have transplanted species among natural ponds that vary in permanence
(92, 149, 153, 154). Together, these studies provide evidence that drying-
associated mortality is often high and is correlated with developmental rate of
the species.
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In order to succeed in the most temporary aquatic environments, develop-
mental rates must be phenomenal. A seed shrimp (Conchostroca) of the Sa-
haran Desert is able to achieve maturity within just five days after pond filling
(138). Spadefoot toads (Scaphiopus couchii) of the southwestern deserts of the
United States can reach metamorphosis in just 10 days after hatching (176).
In more permanent environments, the restriction on developmental rates is re-
laxed. North American frogs, for instance, have larval periods that range up to
three years in length (209). Studies of tadpole distributions show that species
with longer larval periods tend to be found in more permanent ponds (23, 32,
149, 154). As hydroperiod increases, so does the potential species pool. Corre-
spondingly, a number of studies have noted correlations between permanence
and species richness (36, 89, 111, 116, 211). While the total number of species
might increase with permanence, there is also significant turnover in species
composition. Most species that live in temporary ponds are absent from perma-
nent ponds (23, 196). This pattern suggests that some factor, or suite of factors,
can often prevent species from occupying habitats that are apparently suitable
given developmental constraints.

Predation and Permanence
While there are many possible reasons why a species may be restricted from
living in more permanent habitats than those it occupies (see caveats below),
predation may be the most widespread. Predatory species are often entirely
absent within the most temporary habitats (91, 139, 153) and are typically
numerous and diverse within permanent fishless ponds (151). Along the in-
tervening portion of the gradient, several studies have shown that the identity,
density, and size distribution of predators changes with even small differences
in permanence (41, 59, 67, 74, 80, 151, 153, 154, 208). For example, Wood-
ward (208) reported an approximately fourfold increase in aquatic predator
density in permanent versus temporary desert ponds in New Mexico. Similar
trends have been found among Michigan ponds where predator density triples
between annual temporary ponds and permanent ponds (149, 151). In these
permanent ponds, average body lengths of predatory salamander, beetle larvae,
and dragonfly larvae were longer by 100%, 36%, and 46%, respectively, than
those of their counterparts in temporary ponds (151).

The association between permanence and predator distribution suggests that
predation could be an important means by which prey distribution becomes
limited in more permanent environments. Species may experience a refuge
within more temporary ponds where they are relatively invulnerable to resident
predators (68, 156). Indeed, many nonfish predators have strong effects on prey
abundance (15, 44, 76, 199, 204). However, other studies from a range of
habitats also suggest that aquatic predators can have little or no effect on prey
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abundance (71, 166). Because the influence of a given predator is known to vary
substantially among prey species (e.g. 198), evaluation of predator limitation
requires comparing prey susceptibility to predation at multiple points along the
permanence gradient. While these more directed analyses are relatively few,
they uniformly suggest that predation has greater effects on prey survivorship
in larger and more permanent habitats (115, 135, 149, 153, 154) and can lead
to elimination of prey species (153).

Permanence, Predation, and Mechanistic Tradeoffs
Thus far we have argued that the negative effects of pond hydroperiod and
predation are important and widespread. Because predator distributions are also
limited by hydroperiod, these factors covary inversely. A generalist strategy
would require mastering the very different situations imposed by predator-free
temporary environments as well as permanent environments where numerous
and diverse predators are found. The rarity of true generalists in these habitats
(see below) suggests that restricted distributions may have some mechanistic
basis.

Behavior may form the foundation of an important tradeoff for many aquatic
taxa. Put simply, many animals must move to forage, but moving can also
increase the likelihood of being detected by movement-oriented predators (82,
85, 145, 193, 208). Experiments substantiate that movement (or activity) is cor-
related with acquisition of food as well as both growth and developmental rates
(147, 149, 152). Both interspecific comparisons and intraspecific manipulation
of activity show that more active individuals are also at greater risk of predation
(4, 21, 72, 148). Additionally, studies of diet preference show that activity is a
strong predictor of relative risk of potential prey in aquatic environments (12,
84, 146).

If activity is a critical trait for assortment among aquatic habitats, then species
from different regions of the habitat gradient should differ in activity. As
expected, larval amphibians (82, 149, 154, 195, 208) and insects (27) from more
temporary ponds tend to have higher activity levels than do their counterparts
from permanent habitats. Where these comparisons have been coupled with
field transplants across the permanence gradient, studies have demonstrated a
strong association between phenotype and performance (149, 154).

Other Mechanisms and Some Caveats
Mechanistic approaches to the study of temporary pond communities are rel-
atively new (154). More substantial evidence exists for the roles of activity
and other traits in contributing to patterns of distribution in fish-containing
versus fishless habitats (see below). In addition, information on temporary
pond communities has a strong taxonomic bias. Most studies of distributional
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mechanisms in temporary ponds have been conducted using larval amphibians.
We know far less about the relationships among phenotype, performance, and
distribution for the invertebrates in these habitats. Even if research on these
other taxa also finds that activity is an important trait, there are other important
mechanisms that can lead to restriction of a species distribution. Some species
require drying or water level fluctuation as a physiological trigger for the initi-
ation of embryonic development (51, 118). Many other species are sessile and
not subject to activity tradeoffs. For these and other species for which move-
ment is not related to risk, different traits may underlie patterns of distribution.
For example, allocation of resources among morphological defense, develop-
ment, and reproduction may provide critical axes for the sorting of groups such
as snails among ponds that vary in permanence (19, 86). Specialization on
food resources available in ponds of different permanence could be important
for some taxa (1, 11).

Finally, interspecific competition has often been advanced to explain distri-
butional patterns along the permanence gradient (e.g. 18, 37). There is strong
evidence that interspecific competition can have severe effects, including com-
petitive exclusion, in artificial pond experiments (e.g. 102, 104, 197, 198).
While competition may have similar effects on distributional patterns in the
field, relatively few experimental analyses have been conducted in natural en-
vironments. From these it appears that although competition can lead to species
exclusion in some cases (91, 113, 205), it often has relatively small effects on
survivorship, growth, and reproduction in other cases (86, 149, 150, 154, 195).

THE PREDATOR TRANSITION

That strong predator-prey interactions across the predator transition act as a
sieve for community organization (Figure 2) is apparent when one compares
studies that manipulate predator density within a single community type, where
relatively weak interactions are expected, to studies that introduce a predator
into a community type that does not normally contain that predator, a manip-
ulation expected to produce pronounced changes in community composition
(172, 190). When introduced into a previously fishless habitat, fish precipitate
major changes in the community by substantially reducing the density of some
prey species, sometimes to the point of local extinction (17, 30, 47, 57, 101,
124, 195). Similar conclusions are drawn from studies comparing the fauna of
fishless and fish-containing habitats (27, 55, 95, 123, 163, 184). In contrast,
manipulations of fish density in habitats normally containing fish often pro-
duce only minor changes in prey density (14, 43, 58, 173, 174, 190). Some
studies of this sort have indicated more substantial effects of predatory fish
(100, 103); however, only prey abundance, not species composition, is affected
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in these studies. Similarly, when predatory invertebrates normally found only
in fishless habitats are introduced into fish habitats (with fish excluded), these
predators cause substantial reductions in prey density (95, 132, 179) and elim-
ination of some taxa (179). Predatory invertebrates may have weaker effects,
however, in their native fishless habitats (95).

To briefly illustrate the degree of change in community structure across the
predator transition, we used published surveys to calculate average commu-
nity similarity [using species relative abundance and an index of overlap (140)]
between the two community types relative to the average similarity within com-
munity types. For Brooks & Dodson’s (17) classic study of zooplankton in New
England lakes with and without zooplanktivorous fish, community similarity
of habitats across the predator transition was only 16% of that observed among
habitats of the same lake type. Furthermore, 47% of the species sampled ex-
hibited complete segregation by lake type. Similar patterns are seen in littoral
communities. McPeek (95) sampled the larval odonate fauna of three fishless
and three fish-containing lakes in Michigan. ForEnallagmadamselflies, a di-
verse group that constituted the majority of damselflies in the lakes, all seven
species exhibited complete segregation by lake type (Figure 1). For larval
dragonflies, community similarity of habitats across the predator transition was
57% of that observed among habitats of the same lake type. This comparatively
high value is due to the presence of a single common species that is ubiquitous
among lakes and does not reflect a general lack of habitat segregation among
dragonflies in these lakes. In fact, of the eight species that occurred in more
than one lake, four occurred in only one lake type.

The substantial changes in species composition that are observed across the
predator transition arise because interactions between species from similar com-
munity types are weaker than those between species from different community
types. For predator-prey interactions, interaction strengths are determined by
the coupled effects of predator traits that determine foraging characteristics
and prey traits that determine susceptibility. Thus, elucidation of mechanisms
underlying changes in community structure across the transition requires an
understanding of these predator and prey qualities.

Foraging Characteristics of Predators
Changes in community composition observed across the transition occur pri-
marily because foraging characteristics of predatory fish and invertebrates are
qualitatively different, and thus favorable prey defense attributes in one com-
munity type are generally unfavorable in another community type.

SIZE-BIASED PREDATION Predatory fish and invertebrates often differ in the
size of prey items consumed. Most fish disproportionately consume larger
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individuals across the range of prey sizes that they are physically able to ingest
(33, 49, 95, 99, 103, 107, 186, 212). In part, size selectivity may be a behavioral
adaptation to maximize foraging gain (99, 194). Additionally, because fish are
generally much larger than their invertebrate prey, only a few large prey species
are able to grow to an invulnerable size (161). Thus the coupled effects of fish
selectivity and their comparatively large size lead to the general trend of greatest
predatory effect on larger prey species. In contrast to fish, predatory inverte-
brates exhibit less size bias in prey consumption, generally consuming all prey
within the range of prey sizes that they can capture and handle (2, 117, 126, 167,
171, 186). Predatory invertebrates typically have a disproportionate impact on
small-bodied prey, however, because functional constraints often limit the abil-
ity of these predators to consume larger prey. Additionally, because of the sim-
ilarity in size to their invertebrate predators, many prey species may grow large
enough to become invulnerable to invertebrate predation (178, 186, 203, 207).

MECHANISMS OF PREY DETECTION Most fish species that have strong impacts
in these habitats rely on vision for prey detection (54). Predatory invertebrates,
in contrast, primarily use tactile cues to detect prey (117), although some may
use a combination of visual and tactile cues (112). An important result of this
difference in detection mechanisms is that fish can detect prey from a greater
distance than can invertebrates (210, and see 95). Additionally, although both
fish and invertebrates detect moving prey more easily than stationary prey (40,
54, 65, 125, 210), the acute vision of fish may enable them to detect less
conspicuous prey motion than do predatory invertebrates.

SEARCH MODES Predatory fish and invertebrates also tend to differ in search
mode. Fish actively search for prey over a comparatively broad spatial area (39,
54, 65). Predatory invertebrates, in contrast, often employ a passive ambush,
or “sit-and-wait,” foraging mode in which they remain motionless and capture
prey that come near them (117). The ambush foraging mode of predatory inver-
tebrates greatly limits the area over which each predator forages and produces
relatively low encounter rates with prey. Some predatory invertebrates do ac-
tively stalk prey, but these are usually limited to slow movements along a plant
stem or other substrate (96).

PURSUIT SPEED While some predatory invertebrates are able to swim (e.g.
dragonfly larvae and some beetle larvae), the pursuit speed of fish is greater
than any typical predatory invertebrate. This disparity implies that while inver-
tebrate prey may sometimes be able to escape from predatory invertebrates by
swimming, the prey would have little chance of swimming away from a fish
(96).
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Traits of Prey that Influence Susceptibility to Predation
The contrasting foraging modes of predators imply that prey with traits that
allow them to coexist with predators in one community type will fare poorly
with predators in the alternative community type. Some key traits of prey that
seem to underlie turnover on the gradient have been identified in several taxa.

BEHAVIOR Prey activity may be the most important trait shaping changes
in species composition across the predator transition. Higher activity levels
increase encounter rates with predators and enhance a predator’s ability to detect
prey. Furthermore, because prey movement is usually for foraging, locating
mates, or other essential activities, prey can not remain inactive, and thus are
forced to strike an appropriate balance between the benefits and risks associated
with activity (63, 144, 193). For most freshwater invertebrate species, the
resolution of this tradeoff will involve lower activity levels in species that coexist
with fish than in species coexisting with invertebrate top predators in fishless
habitats (13, 26, 29, 70, 77, 96, 111, 165) because of the greater mortality risk
associated with activity in the presence of fish (13, 26, 27, 56, 70, 77, 96).

The importance of the tradeoff between activity and risk in shaping the dis-
tribution of species across the predator transition seems especially strong for
predatory invertebrates. For example, larvae of the dragonflyAnax junius, im-
portant top predators in many fishless habitats (95, 77, 132), are very active
when foraging, a trait probably contributing to their success in fishless habitats
(77). Anax, however, are thereby highly susceptible to fish predation (30, 77,
195), sufficiently so that they are excluded from habitats with predatory fish (30,
77, 95, 195). Similarly, the activity patterns ofEnallagmadamselfly larvae, in-
termediate level predators in freshwater communities, contribute substantially
to their habitat distribution over the gradient (13, 96, 121). Species that co-
exist with fish are less active than those that face only predatory invertebrates
(13, 96).

Besides general activity level, other behaviors contribute to changes in species
composition over the predator transition. Both the encounter response (56, 96)
and the use of protective microhabitats (8, 77, 120, 121, 137, 162, 189) are
important in some taxa. For example, Pierce (120) examined microhabitat use
and vulnerability to fish predation of larval dragonflies from fish-containing and
fishless habitats. A species found commonly in fishless habitats often used ex-
posed microhabitats, even in the presence of fish, while two related species that
are abundant in habitats with fish overwhelmingly used habitats offering cover
when fish were present. Accordingly, the species from the fishless habitat was
more vulnerable to fish predation than the species native to the fish-containing
habitat (120).
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LIFE HISTORIES Tradeoffs in prey life histories across the predator transition
may contribute to patterns of species turnover, especially for species that com-
plete their entire life cycle in the aquatic environment (46, 78, 88, 186, 206).
A fundamental life history trait that shapes species’ success over the gradient
is the pattern of reproductive allocation over ontogeny (186, 188). For size-
structured populations, the optimal resolution of the tradeoff between allocation
of resources to growth versus reproduction over ontogeny will be strongly in-
fluenced by the ontogenetic pattern of mortality experienced by the population
(81, 186–188). Thus the differences between fish-containing and fishless habi-
tats in the form of size-biased predation may restrict prey species to habitats for
which their life histories are appropriate. For example, differences in reproduc-
tive allocation patterns between species of a littoral amphipod,Hyalella,appear
to be the primary determinant of species segregation between fish-containing
and fishless habitats (186). Predators in these two habitats impose qualitatively
different regimes of size-specific predation mortality onHyalella,a difference
manifest in the overall mortality schedules of the amphipods in the two habi-
tats (186). Whereas mortality increases with body size in the fish-containing
habitat, it declines with size in the fishless habitat.Hyalella in lakes with fish
initiate reproduction at a smaller body size and have a greater size-specific re-
productive effort than doHyalella from habitats with large dragonfly predators.
Thus, in the habitat where larger individuals are more susceptible to predators,
Hyalellashifts reproduction to smaller sizes, but in the habitat where smaller in-
dividuals are more susceptible,Hyalellashifts reproductive allocation to larger
size classes, thus allowing rapid growth through the most vulnerable size range
(186).

MORPHOLOGY For many species, especially those occupying open water, the
most important morphological feature affecting their relative success across the
predator transition is body size (212), although other traits may also play a role
in some groups (52, 98). In habitats with fish, where larger individuals are most
vulnerable to predation, small-bodied prey species are most successful (64, 83,
122, 128, 160, 183, 186, 188). In fishless habitats, where smaller individuals
are disproportionately vulnerable to predation, large-bodied prey species are
most successful (50, 131, 183, 184, 186).

In summary, the contrasting modes of predation by major predators in fishless
and fish-containing habitats appear to be the primary cause underlying the de-
velopment of alternative community types across the predator transition. Prey
traits effective at mitigating risk of predation in one community type unavoid-
ably produce inimical effects in the alternative community type. Specifically,
the relatively large body size, high activity levels, and conspicuous microhabitat
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use of prey that allow them to be successful in fishless habitats also make them
highly conspicuous to predatory fish. Conversely, the relatively small body
size, reduced activity, and cryptic behavior of those prey species that are suc-
cessful in fish-containing habitats make them vulnerable to the invertebrate top
predators found in fishless habitats.

Competition
Competitive effects may play some role in the segregation of species across the
transition (105, 155, 180), but these effects are less important than predation
(3, 95, 121, 179). Although early work in this system proposed that interspe-
cific competition with larger-bodied zooplankton was the primary vehicle by
which small-bodied zooplankton species were excluded from fishless habitats
(17, 48), subsequent empirical studies demonstrated that predation by size-
selective predatory invertebrates was often the principal cause of exclusion of
these species (35, 179, 212). Although this dichotomous view of the effects of
predation and competition is overly simplistic, since the two may work interac-
tively to shape patterns of species success over the gradient (192), predation is
clearly the major factor driving community changes over the predator transition.

SPECIALIZATION AND PHENOTYPIC PLASTICITY

Many aquatic species are habitat specialists, occurring in only one region of the
gradient. That specialization is common on the gradient is perhaps to be ex-
pected since circumstances favoring the evolution of specialization (42, 60, 61)
are common across much of the gradient. Specialization is especially likely
to evolve (a) in spatially heterogeneous but temporally predictable environ-
ments, (b) when individuals face fitness tradeoffs associated with occupying
different habitat types, and (c) when hard selection (e.g. strong mortality selec-
tion from predators and physical environmental factors) predominates. These
qualities, common for permanent ponds and lakes, may foster the evolution of
specialization in species occupying these habitats. Temporary ponds, however,
often exhibit temporal changes in species composition caused by high variation
in hydroperiod. Alternate wetter or drier years can alter species composition
of habitats as “permanent pond taxa” spread out across the landscape during
wet periods, only to “retreat” with the next dry period (67). Specialization
is less likely to develop in species occupying these temporally heterogeneous
habitats (60).

Holt (60, 61) has stressed the potential importance of habitat selection in
the evolution of specialization. Habitat selection can limit the scope of natural
selection on a population because only agents of selection operating within
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the preferred habitat can guide evolutionary change in the population. This
effect can lead to a self-reinforcing evolutionary process when individuals face
fitness tradeoffs between habitat types (60). Habitat selection causes ever more
precise adaptation to one habitat type (and consequently reduced performance
in alternative habitat types), and this habitat specialization in turn favors ever
greater proficiency for selecting the most appropriate habitat type. Many aquatic
taxa have highly mobile terrestrial (amphibians) or aerial (insects) adult stages,
and thus they have potential for selecting appropriate habitats along the gradient
(73, 129, 130). Natal philopatry may also reinforce specialization, even in
species unable to discriminate between habitats containing different community
types (93).

Many freshwater species alter activity (26, 33, 53, 66, 69, 96, 143, 162, 201),
microhabitat use (120, 121, 137, 163), morphology (52, 119), and life history
(31, 62, 87, 109, 164, 168, 184, 185) in response to predators. For many aquatic
prey species, such phenotypic plasticity appears to function as a mechanism for
dealing with spatial or temporal variation in predator density within a single
habitat type rather than as a mechanism allowing broader distribution across
the habitat gradient. Thus, many species exhibiting plasticity in behavioral or
other traits in response to predators are specialist species that occur in only one
habitat type. For example,Enallagmadamselfly species that occur only in fish-
containing habitats and those species that occur only in fishless habitats respond
to the predators with which they coexist by altering their behavior in ways that
reduce predation risk (13, 96, 121). They do not respond appropriately, how-
ever, to predators with which they do not coexist (96). Thus, predator-mediated
plasticity inEnallagmadoes not allow a broader distribution on the gradient.

Although phenotypic plasticity may often be of little importance in allowing
species to maintain a broad distribution on the habitat gradient, it is probably
of substantial importance in the success of species within a habitat type. Be-
cause the ability to deal with predation risk entails substantial fitness tradeoffs
(193), species that facultatively alter their phenotype in response to changes in
the immediate threat of predation can partially mitigate detrimental effects of
these tradeoffs (145). Since this topic has been reviewed elsewhere (85, 145,
193), we will simply stress here that the prevalence of plasticity in response to
predators among taxonomically diverse freshwater organisms underscores the
considerable importance of these tradeoffs in this system.

For some species phenotypic plasticity does appear to facilitate a broader dis-
tribution on the gradient under some environmental conditions, but restricted
breadth of reaction norms seems to limit the conditions under which a broader
distribution might occur. For example, although their distributions may over-
lap, larval chorus frogs (Pseudacris triseriata) are most successful in more
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temporary habitats with few predators, and larval spring peepers (P. crucifer)
are most successful in more permanent habitats with predatory invertebrates;
differential susceptibility to predation contributes importantly to this pattern
(149). Both species facultatively respond to the presence of an invertebrate
predator by reducing activity, but chorus frogs do not reduce activity to levels
observed for spring peepers (149). This limit to the breadth of their reaction
norm probably explains the low survival of chorus frogs in habitats with preda-
tory invertebrates (149).

ADAPTATION AND SPECIATION ON THE
HABITAT GRADIENT

The lentic freshwater habitat gradient presents a potentially potent template for
evolutionary change and diversification in freshwater taxa (79, 97). Both the
substantial heterogeneity among lentic habitats in critical selective agents and
the inherent insularity of these habitats may drive adaptation and foster speci-
ation. Relatively few studies, however, have explicitly examined evolutionary
processes mediated by the key ecological agents shaping the habitat gradient,
though many have interpreted species or population comparisons in adaptive
terms.

Size-biased predation is one potentially important evolutionary agent that
has been studied in some detail. Size-biased mortality will produce an evolu-
tionary response in populations if heritable phenotypic variation in body size
or associated life history traits exists in populations. At least moderate levels
of heritability are common for a broad range of traits and taxa (134), and for
morphological and life history traits of aquatic taxa specifically (169). These
observations imply that an evolutionary response to size-biased predation may
be common in aquatic prey populations, a conclusion supported by several
studies. For example, natural (158) or simulated (38) size-biased predation on
cladoceran zooplankton species cultured in the laboratory does produce adap-
tive change in body size and life history traits. Similarly, a natural population
of Daphnia galeata mendotae(169) that experiences strong predation by fish
displayed a genetically based reduction in mean body size and size at matu-
rity over time, a response consistent with the form of size-biased predation
experienced by the population.

For species distributed across major transitions on the habitat gradient, local
adaptation may be an important source of differentiation among populations (20,
45). For example, Spitze (159) found genetic differentiation in body size among
Daphnia obtusapopulations. He suggested that variation among populations in
predation regime is the likely cause of the divergence. Also, Neill (106) found
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genetic differentiation in vertical migration patterns between two neighboring
populations of a calanoid copepod, each of which appears to be locally adapted
to deal with the form of size-specific predation it experiences.

Macroevolutionary diversification in aquatic taxa may occur in the context of
the freshwater habitat gradient through the mechanism of evolutionary habitat
shifts (98). This mechanism is a form of peripheral isolates speciation (16) in
which a small founder population of a species normally found in one habitat type
may sometimes disperse to an alternative habitat type. Rarely, these dispersing
individuals might establish a population that persists long enough to adapt
to local conditions. Speciation may be promoted by both the potential for
rapid genetic change in small founder populations (5) and factors impeding
backcrossing with ancestral populations, such as assortitive mating, natal habitat
philopatry, and low dispersal rates due to the inherent insularity of ponds and
lakes. Although historical evidence for this mechanism is sketchy, many closely
related species do segregate on the gradient (Table 1, Figure 1), indicating that
phylogenetic inertia need not constrain a lineage to one habitat type and that
habitat shifts may occur across a wide range of freshwater taxa. The potential
importance of evolutionary habitat shifts in fostering diversification can best be
evaluated through phylogenetic techniques (16, 97, 98). Phylogenetic analysis
of Enallagmadamselflies suggests that coexistence with fish is the ancestral
condition in the genus, and that species have independently invaded fishless
habitats containing large dragonfly predators at least twice (97), indicating that
habitat shifts have occurred in this group and may contribute to the high species
diversity of the genus. More studies using phylogenetics are needed before
we can draw general conclusions concerning the role of the habitat gradient in
shaping lineage diversification.

Besides shedding light on historical patterns of diversification and speciation
mechanisms, phylogenetic methods can also serve as a valuable tool for iden-
tifying causal ecological agents driving adaptive evolution and for identifying
those phenotypic traits responsible for species success (16). Again,Enallagma
damselflies are illustrative on this point. Through convergence, species invad-
ing fishless habitats have evolved robust abdomens and large caudal gills (97),
characteristics that allow these species to evade predatory dragonflies (98).

CONCLUSION

As pointed out by Connell (25), if an assemblage of species is to be regarded as
possessing organization or structure, it is the form and strengths of interactions
among the species that must produce that structure. We would further suggest
that it is the traits of individuals that determine the form and strengths of species
interactions and thus ultimately produce structure at the level of the community.
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Gradient studies greatly facilitate our ability to detect the ways in which individ-
ual traits give rise to community structure. On the freshwater habitat gradient,
transitions in community structure are best understood in terms of critical fitness
tradeoffs that limit species distributions along the gradient. This perspective
would not emerge, however, if each habitat type were examined in isolation.
For example, examining the influence of fish predation on littoral invertebrate
communities of fish-containing lakes might lead to the conclusion that preda-
tion often has little effect on these communities. While this conclusion would
often be correct within the context of this single habitat type, the broader per-
spective gained by the gradient approach would reveal the fundamental role of
predation in organizing the community by limiting community membership to
only a subset of potential species. Indeed, the permanent removal of fish from
such habitats would likely result in wholesale changes in community structure
(10). Moreover, evaluating the functional basis of differential species success
across community types elucidates the mechanisms by which individual traits
create community structure. Finally, these same ecological mechanisms may
serve as important evolutionary agents of selection for aquatic taxa, driving
adaptive evolution and forming a template for lineage diversification (97, 98).
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