WFS 493/560 Test #1 Review

Reproductive Strategies (Dr. Sandy Echternacht)

- 1. Know the 3 abiotic cues that work singularly or in combination to stimulate the breeding season.
- 2. Be able to describe in detail the typical biphasic life cycle of amphibians.
- 3. Be able to describe the differences between direct development, viviparity, and ovoviviparity.
- 4. Be able to compare and contrast the differences between hydridogenesis, gynogenesis, and parthenogenesis (Dr. Echternacht's lecture and assigned reading from Zug's book).
- 5. Know the 5 types of parental care discussed by Dr. Echternacht and be able to provide a taxa (e.g., species or genus) that uses a particular parental care type.

Amphibian Characteristics, Taxonomy and Evolution

- 1. Know the general definition of an amphibian.
- 2. Know the kingdom, phylum, subphylum, class, subclass, orders, and suborders of amphibians.
- 3. Be able to provide 5 characteristics that are common to most amphibians.
- 4. Know the 2 types of skin glands of amphibians.
- 5. Know the difference between the colemula and opercular auditory channels.
- 6. Know the percent species composition of the extant amphibian orders.
- 7. Know 5 unique characteristics of Gymnophiona and where they are distributed.
- 8. Know the differences between stegokrotaphic and zygokrotaphic skulls.
- 9. Given a list of characteristics, be able to match the appropriate caecilian family with the correct list of characteristics.
- 10. Know the common and taxonomic names of each caecilian family.
- 11. Know which family of caecilians is believed to be the most primitive.
- 12. Be able to provide 5 unique characteristics of Caudata and know where they are primarily distributed.
- 13. Know the common and taxonomic names of each caudate family.
- 14. Know the 3 hypotheses for lungless evolution in the Plethodontids.
- 15. Know that the Plethodontids have diagnostic nasolabial grooves (and what happens to the grooves in males of many species during the breeding season).
- 16. Know that the Hynobiids have external fertilization and that their teeth are in patches.
- 17. Know that the Ambystomatids primarily breed in winter. Exceptions can be those living in xeric regions (e.g., *Ambystoma tigrinum mavortium*) and the marbled salamander (*A. opacum*; breeds in the fall).
- 18. Know which families of salamanders are obligate paedomorphs.
- 19. Know where the sirens and amphium as are distributed in the United States.
- 20. Know where the torrent and giant salamanders are distributed in the United States.
- 21. Be able to provide an explanation why members of Rhyacotritonidae have reduced lungs.
- 22. Know which family of salamanders is believed to be the most primitive.
- 23. Know which family of salamanders contains the largest salamanders in the world.
- 24. Be able to provide 5 unique characteristics of Anura and know where they are primarily distributed.
- 25. Know the common and taxonomic names of each anuran family.
- 26. Know that male leptodactylid frogs frequently guard the eggs, and that all the members of Leptodactylidae develop via direct development except for *Eleutherodactylus jasperi*.
- 27. Know that the hylids are known for their large toe discs that help them climb.
- 28. Know how ranid species kick their legs when swimming compared to leiopelmatids, and which kicking strategy is considered more primitive.
- 29. Know what the Bidder's organ is and which anuran family it is a characteristic of.
- 30. Know which anuran family *Breviceps* is a member of and what is the function of the males secretions during amplexus.
- 31. Know which anuran family contains the "flying frogs" and how these frogs achieve flight.

- 32. Know which 2 families of anurans are believed to have converged evolutionarily with respect to skin toxins and aposematic coloration.
- 33. Know which anuran family is characterized by transparent skin.
- 34. Know which anuran family is characterized by a leaf-like appearance.
- 35. Know which anuran family contains the gastric-brood rearing frogs, which are now believed to be extinct.
- 36. Know which anuran family contains the African clawed frog (*Xenopus laevis*), which are commonly used in lab experiments and have been introduced throughout the United States.
- 37. Know which anuran family contains the hairy frog (*Trichobatrachus robustus*), and some of the hypotheses for why males may develop hair-like dermal protuberances during breeding.
- 38. Know which family contains the genus *Alytes*, which are known for males carrying fertilized eggs on the back of their legs as a parental care strategy.
- 39. Know which family of anurans is known to inhabit xeric regions and breed explosively during intense summer rains.
- 40. Know which family contains the smallest tetrapod in the Southern Hemisphere.
- 41. Be able to describe the unken reflex of fire-bellied toads and know its function.
- 42. Know which anuran family in the suborder Neobatrachia has species that perform inguinal amplexus.
- 43. Know that the leiopelmatids and the pipids are the only anuran families without a protusible tongue.
- 44. Know that members of Rhinophrynidae and Hemisotidae have prehensile tongues.
- 45. Know that females in the families Discoglossidae and Pelodytidae have been reported vocalizing to males.
- 46. Know which anuran family is known for internal fertilization.
- 47. Know where tailed frogs are found in the United States.
- 48. Know which anuran family has members where the tadpoles develop in the vocal sac of males.
- 49. Know which anuran family was recently discovered in India when digging a well.
- 50. Know which families are members of the suborders: Mesobatrachia and Archaeobatrachia.
- 51. Know which family of anurans is believed to be the most primitive.
- 52. Know which family has the highest and lowest species richness in each amphibian order.
- 53. Know the geologic period that amphibians likely began to appear. Also, know the 2 geologic periods that had substantial speciation (probably from adaptive radiation), and what geologic event likely triggered this accelerated speciation.
- 54. Be able to compare and contrast the 2 hypotheses for the origin of tetrapods (i.e., lobe-finned [Osteolepiformes] vs lungfishes [Ceratodontiformes and Lepidosireniformes]).
- 55. Be able to describe the fin-fold and body-spine theories for limb development.
- 56. Be able to compare and contrast theories on the monophyletic and polyphyletic origin of tetrapods.
- 57. Know basic characteristics of temnospondylous amphibians, Nectrideans and Microsaurs.
- 58. Know the 3 first fossil records of each order (*Triadobatrachus massinoti*, *Karuaus sharovi*, *Apodops pricei*), their geographic origin, and the period they were fossilized.

Amphibian Courtship and Breeding

- 1. Understand intimately the 5 cues amphibians may use for orienteering to breeding sites and during dispersal, and which cues are likely most important for short vs. long distance movements.
- 2. Know what physical factors of an anuran can influence the frequency of a call.
- 3. Know whether low or high frequency calls travel the farthest distance, and which are used most often in forests.
- 4. Be able to describe the mechanics of a typical anuran call.
- 5. Be able to discuss the difference in sound power on average between anuran and bird calls, and how anuran sound power relates to your standard Walkman or the front row at a rock concert.
- 6. Be able to describe the differences between the 3 types of vocal sacs, and know which may be external or internal.
- 7. Know the 4 types of anuran calls.
- 8. Be able to describe the differences among the 4 types of advertisement calls.
- 9. Know which part of the call "co-qui" attracts female *E. coqui*.

- 10. Know how one can stimulate the release call from a male anuran.
- 11. Understand intimately the 5 strategies of advertisement calls.
- 12. Know whether females prefer longer or faster calls.
- 13. Be able to provide some examples of predators that may cue in on calling males.
- 14. Understand how temperature, vegetation, soil, rivers and food resources can influence calling activity. Also, know the approximate maximum number of days a healthy male can call consecutively.
- 15. Understand how calling conspecifics can influence calling rate.
- 16. Understand the energetic costs of calling compared to other life-cycle activities.
- 17. Understand the relationship between carbohydrate and lipid oxidation, season, and calling behavior.
- 18. Know the average chorus tenure of a typically healthy calling male (i.e., what % of the breeding season will an individual male call?).
- 19. Be able to describe secondary sexual characteristics of caecilians, caudates and anurans.
- 20. Know which families of salamanders have external fertilization thus are believed to engage in minimal courtship.
- 21. Understand the comparative energetic costs of terrestrial and aquatic courtship for salamanders.
- 22. Be able to describe the typical courtship sequence of Ambystomatid salamanders.
- 23. Know 2 tactile cues that anurans use to recognize conspecifics.
- 24. Know the 6 types of amplexus.
- 25. Be able to compare and contrast aquatic vs. terrestrial oviposition in anurans.
- 26. In species that defend fertilized eggs, know whether the male or female usually defends the eggs in anurans and caudates.
- 27. Be able to describe internal fertilization in caecilians, caudates and anurans.
- 28. Be able to describe the structure and composition of a spermatophore.
- 29. Be able to compare and contrast the energetic costs of reproduction in male and females tungara frogs.
- 30. Know the average age of first reproduction for the majority of anurans and caudates.

Post-metamorphic Movements (Dr. Betsie Rothermel)

- 1. Be able to compare and contrast the differences between homing, migration and dispersal.
- 2. Know the genetic and demographic importance of occasional dispersal of individuals among populations.
- 3. Be able to compare the relative difference in vagility among *Ambystoma*, *Rana* and *Bufo* as reviewed by Semlitsch and Bodie (2003).
- 4. Understand how capture rates of differed between old fields and forest for metamorphs emerging from mesocosm pools at forest edges (Rothermel and Semlitsch 2002).
- 5. Understand how capture rate of metamorphs was related to distance from the forest edge (Rothermel 2004).
- 6. According to Rothermel and Semlitsch (2006), know when most juvenile salamander mortality occurs and how mortality rates differ among old fields, forest edges and forest interior sites.
- 7. Know how juvenile toad capture rate and survival differed between forest and clearcut sites in the LEAP study (Todd and Rothermel 2006).
- 8. Know the buffer width recommendations of Bodie and Semlitsch (2003).
- 9. Know how body size at metamorphosis influenced postmetamorphic survival of spotted salamanders (Rothermel and Semlitsch 2006).
- 10. Understand how chemicals influenced time of metamorphosis and body size at metamorphosis (Boone et al. 2001).

Required Readings:

See website. Yes, there will be questions (approximately 10% of test will come from the readings).