Amphibian Immunology

Heather Williamson University of Tennessee Department of Microbiology March 4, 2014

Vertebrate Immunology

Innate Immunity: Terminology

- Antigen: something foreign or toxic to the cell or body
 Macrophages: "Big-eater"
- macroprages: Big-eater
 -role is to phagocytose
 -stimulate lymphocytes
 -attach foreign substances, infectious microbes, and cancer cells
- Dendritic Cells: Process antigen and present it to cell surface of T cells of the immune system
- -Messengers between innate and adaptive
 Natural Killer Cells: Cytotoxic lymphocyte

 -rapid response
 -release cytokines (signals and chemicals)

Innate Immunity: Terminology

- Pattern Recognition Receptors
 -primitive part of the immune system
 -found on host cell surface
 -recognize pathogen-associated molecular
 patterns
- Pathogen-associated Molecular Patterns (PAMPs)
 -molecules associated with groups of pathogens
 -activate immune responses
- Antimicrobial and serum proteins
 -potent, broad spectrum antibiotics
 -enhance immunity

Innate Immunity Summary

- Non-specific defense mechanisms
- Immediately or within hours of antigen appearance
- Physical barriers, chemicals in the blood, immune system cells
- Activated by chemical properties of the antigen (PAMPs)

Adaptive Immunity

Adaptive Immunity: Terminology

• T cells (mature in Thymus)

-T_{H1}

-T_{H2}

- Major Histocompatibility Complex Proteins (Found on Host Cells)
- Antigen presenting cell
- B cells (produced in the bone marrow)
- Antibody

T cells

- Type of lymphocyte
- · Matures in the thymus
- CD4 T cells-Helper T cells

 -T_{H1}: promote macrophage activation and cytotoxic T cell proliferation
 - -T_{H2}: Evoke strong antibody response
- CD8 T cells-Cytotoxic T cells
 -kills infected/dysfunctional cells

Major Histocompatibility Complex

- Series of genes that code for cell surface proteins controlling the adaptive immune response.
- Class I MHC contains three genes; proteins from these genes are expressed on almost all cells.
- Class II MHC genes contain 3 genes whose proteins are expressed on antigen-presenting macrophages, dendritic cells and B cells.

Antigen Presenting Cell (APCs)

- Cell that displays foreign antigens complexed with MHCs on their surfaces (called antigen presentation
- T cells recognize using their T-cell receptors (TCRs).
- (cytotoxic) T cells via MHC class I molecules and act as APCs
- Term is often limited to specialized cells(macrophages, dendritic cells and B cells) that generally express MHC class I and II and stimulate CD4⁺ (Helper) and CD8⁺ (cytotoxic) T cells

B cells

- Formed in the bone marrow
- Has B cell receptor protein that allows B cell binding to specific antigen
- Makes antibodies
- Develops into memory cells

Active Immune Response Summary

- Antigen specific immune response
- More complex than innate
- Antigen must first be processed and recognized
- Once recognized, specific cells attack specific antigen
- Also includes memory

Tolerance

Ability to discriminate self versus non-self
 -prevents over reactivity to environmental
 stimuli (allergens, normal microbes, etc)
 -Important for fetus, organ transplants,
 skin grafts

Amphibian Immunity

Xenopus

Connecting taxon that links ancient vertebrates and mammals

- Comparative model of choice for immunological studies
- Little is known of other amphibians

Devel. stages (days)	Liver	Thymus	Spleen	GALT
40 (d3)		Thymic epithelium buds from 2nd visceral pouch	Absent	Few scattered CD3s Expressing leukocytes
46 (d4)	Lymphopoiesis in peripheral layer, Ig (μ)and sterile TCRβ RAG, AID	Epithelium, no precursors	Spleen anlage mesenchymal thickening in the mesogastrium	No B cells
47 (d4–5)	Lymphopoiesis, and B cell development in absence of Ag	Colonization by Lymphopoietic precursors from post- VBI (~100 cells) RC47*	Blood cells (No Lymphopoiesis)	
48 (d6-7)		Cortex-moddula, full TCRβ mRNA, CD3ε CD8 ⁺ Thym., class II ⁺ epithelial cells		
49 (d10-13)	IgL rearrangements	First CTX ⁺ thymocyte, more CD8 ⁺	Spleen B cells (~200) and 1 st detect Ab responses	
50 (d15)		Ongoing thymocyte differentiation (3×10 ⁴ cells)		
56 (d38)		Ongoing thymocyte differentiation (9×10 ⁵ cells)	Detectable T cell responses	
58 (d44)		Max. size of the thymus (1-2×10 ⁶ cells)	Max. larval T cell response (1 × 10 ⁶ cells)	
Adult (>d60)	Adult-type leukocytes	Thymus move near tympanum New adult-type thymocyte differentiation	Adult T cell responses (1-2 × 10 ⁷ cells)	
Adult (> 1 yr)		Thymus progressively filled by fat tissues	$(1-2 \times 10^7 \text{ cells})$	Many IgM ⁺ and IgX B cells, as well as T cells (CD8 ⁺ and

Larval Immunology

- Competent Innate Immune System
- Weak Adaptive Immune System
 -Small amount of T cells and B cells in
 larvae
 - -NK cells only right before metamorphosis

Immune Remodeling During Metamorphosis

What is going on during Metamorphosis?

- Tadpoles are free-living so must be protected against potential pathogens
- During metamorphosis, they acquire adult specific molecules
- · Must show tolerance to new self molecules
- T cell function becomes impaired
- Express different antibody repertoire
- Lessening of skin graft tolerance
- The appearance of MHC class I antigens
- Persistence of immunological memory

Adult Immunology

- Immune system becomes complete 2-3 weeks after metamorphosis
- Strong Innate and adaptive immune responses

 Antimicrobial peptides
 NK cells
 - -Complement
- Adaptive Immune system similar to other mammals

 Except B cells differentiate mostly in the liver and spleen (instead of bone marrow)

Temperature and Immune Status

- + Helminth clearance is slower at 15°C that 25°C
- Skin grafts are rejected faster at 27°C than at 21°C
- These and other data suggest selective inhibitory effect of low temperature on T-cell function

Other modulators of immune response

- Temperature
- UV
- pH
- Predators
- · Man-made modulators
- · Psychosocial factors
- Xenobiotics

Susceptibility of amphibians to infectious diseases

Review of what you just learned

- First defenses of pathogens through the skin and digestive tract are anti-microbial peptides
- Pathogens are killed by chemical cascades (complement) and/or macrophages
- Adaptive immune response requires time to activate in the presence of antigen -highly specific
 - -generation of memory cells

Increases in Susceptibility not simply due to poor immunity

- Exposure to new, highly virulent pathogens
- New pathogens are immunosuppressive
- Pathogen "bloom"
- Stress response
- · Environmental contaminants