Spacing, Movements, and Orientation

Distribution, Dispersion, and Dispersal

- A little review...
- Distribution: the area occupied by the population or species (line drawn around dispersion)
- Dispersion: the spatial pattern exhibited by the animas of a population
- Dispersal: the movement an individual makes from its place of birth to the place where it reproduces

What factors can contribute to movements?

- Intrinsic
 - Age
 - Life history stage
 - Size
 - Sex
 - Reproductive status
- Extrinsic
 - Environmental quality
 - Season
 - Temperature
 - Humidity

ı			
۰	1	ı	
	ı	ı	

Local Dispersion of Individuals

- Dispersion of individuals occurs at a number of levels
- Species tend to be associated with specific microhabitat patches
- What is a microhabitat?

- Salamanders
 - Eastern Newts
- Frogs
 - Tree frogs vs. Pond frogs
- Snakes
 - Rat Snakes
 - Rattlesnakes
 - Lizards
 - Anole vs. ground skink
- Turtles
- Bog Turtle
- Spotted turtle

Local Dispersion of Individuals

- · Home ranges
 - What is a home range?
 - What is included in a home range?
- Territories
 - Why are territories important?
- Other patterns of space use
 - What are some other important uses of space?

Other patterns of space use

- Brooding/Nest Guarding
- Aggregations
 - Breeding
 - Schooling
 - Environmental factors
 - Drought
 - Overwintering
 - Homing

Movements, Homing, and Migrations

- Most movements occur within the home range
- What are some of the costs and benefits to moving?
- How can managers take advantage of movement data?

Mass Movements

- Migration
 - Amphibians
 - Turtles
 - Garter snakes

Dispersal

- · What is dispersal again??
- Undirected movement to locations unknown by the moving animal and commonly refers to juveniles leaving the home ranges of their parents to find a home of their own.
- Why is this important?

Homing and Orientation

- Ability of a displaced individual to find its way home
- Migration
- What about translocation in conservation?

Movements and Amphibian Decline

- * Climate Change
- Invasive Species
- Pollution
- Pet Trade
- Disease
- * Habitat Loss

Management Issues

- * Habitat Use/Quality
- Movement/Buffer Zones
- * Population genetics
- Relocation,
 Repatriation,
 Translocation

Typical A. tigrinum breeding pond

Eastern Tiger Salamander

- * Ambystoma tigrinum
- * NYS Endangered
- Decreasing throughout their range
- Many areas on Long Island are in danger of development

Pre-metamorphic A. tigrinur

Current Range

Historic Range in N.Y.

Current Range in N.Y.

to://www.dec.state.nv.us/website/dfwmr/wildlife/hem/eatisala.gif

Legal Protection

- New York State Freshwater Wetland Act: 30 m buffer surrounding wetlands
- NYS DEC
 Recommendations: 164 m, no more than 50% upland habitat within 305 m of breeding pond be converted to unusable habitat (based on Semlitsch 1998)

Recent metamorph

Movements

- Brookhaven National Laboratory, Long Island, N.Y.
- * Over 5000 acres
- 22+ confirmed salamander ponds on site
- * 3 Focal Ponds: L1, L3, L7
- Tiger Salamander management and monitoring protocols already in place

Methods

- Collected males and females upon emigration from breeding ponds
- Collected juveniles upon emigration or just before final metamorphosis

Pre-metamorphic A. tigrinum

Results

- Tracked 33 males, 26 females, 47 metamorphs
- Predation:
 Bullfrog, Eastern Hognose Snake, Raccoon, Northern Short-Tailed Shrew, Eastern Ribbon Snake

Radiotransmitter with B. brevicauda tooth marks

Results

- Movements at night during rain event
- Some short movements after implant replacement
- Avoided open fields, development, planted white pine stands

Adult A. tigrinum outside burrow

Conclusions

- Circular buffer zones may be inadequate for this species
- Fails to protect 20% of individuals in this study, however, incorporating a 50 m edge effect, only protects 62%
- May encompass unsuitable habitat and reduce availability of good habitat

Pre-metamorphic A. tigrinur

Connectivity

- Fragmented landscapes resulting from anthropogenic habitat modification can have a significant impact on dispersal, gene flow, and persistence of wildlife populations
- Reduced genetic variation can severely compromise the ability of a population to respond to subsequent environmental change

Adult A. tigrinum

Goals

- Assess population genetic diversity of remaining tiger salamander populations
- Quantify genetic and landscape connectivity among ponds and populations to identify potential corridors and barriers to migration

Adult A. tigrinum

Methods

- Collected samples from 17 breeding sites across Long Island and 9 sites in New Jersey
- Collected as many samples as possible (N=2-93) from each site
- Genotyped 439 individuals across 12 microsatellite loci
- Samples included toe and tail clips and individual eggs from egg masses

A. tigrinum egg mass

Results- Regional Population Structure and Migration

- * Low allelic diversity
- Markers not highly polymorphic (1-13 alleles)
- Mean numbers of alleles ranged from 1.1 to 3.3 in New York and 1.7 to 2.4 in New Jersey

Results- Regional Population Structure and Migration

- High levels of population differentiation between NY and NJ (average Fst=0.217) (FSTAT Goudet 1995; Weir and Cockerham 1984).
- Few individuals were assigned to the pond at which they were sampled with either 80% or 95% confidence, and many of these individuals were assigned to other ponds with high confidence (GENECLASS2; Piry et al. 2004)

Results- Landscape Barriers to Migration

- Defined land cover resistance values from Compton et al. (2007) and Greenwald et al. (2009)
- Calculated euclidean distance and surface resistance (using CIRCUITSCAPE version 3.3; McRae and Shah 2009);
- Correlated these values with Fst using a Mantel test (Rosenburg and Anderson 2011)

Adult A. tigrinum in burrow

Results- Landscape Barriers to Migration

• No relationship between connectivity indices and Fst in either New York (euclidean distance: r = -0.044, p = 0.827; surface resistance: r = -0.056, p = 0.786) or New Jersey (euclidean distance: r = 0.120, p = 0.388; surface resistance: r = 0.226, p = 0.246)

Management

- Calculate protection (buffer zones) on a caseby-case basis
- Estimate probable dispersal habitat and determine available corridors
- Individual breeding ponds can be susceptible to perturbations that may limit migration and dispersal

So What?

- * Global amphibian declines
- Desire to know how to properly conserve and manage this and other amphibian species
- Disease outbreaks; already confirmed Bd and Ranavirus on site
- Can we actively manage this species (e.g. relocation, assisted migration)?

