Heavy Metals

Presented By: Chloe Trexler, Nicole Bissonnette, and Kenn McMahan

- Characterized by one of the following:
 High atomic weight
 High atomic density
 Specific atomic number range
 Examples: Cobait, Copper, Manganese, Zinc, Lead, Iron, Mercury, Cadmium
 Some are necessary for healthy bodily functions, but high amounts can lead
 to damaging effects
 Prone to accumulation

runctions, but high amounts can lead																
H																Me
51	De											C	N	0	-	No
Na	Mg			6	- 24						A			-	CI	~
ĸ	Ca	-	~	Ma			C.0	N	04	Zn	Ga	Ge	As	24	Dr.	R.
Rb	2	Y	21	12	Mo	Te	Re	Pi	10	CI		-	50	To	-	Xe
Ca	D.s.	La	H	Ta	w	Re	01	PI	11 - 1 Au	Ha	'n	-	-	Po	At	Rn
74	Ra							100		-	-	-				

Most Prominent Heavy Metals that Kill Frog Tadpoles

Silver	Cadmium								
Copper	Zinc	dif	different time intervals Metal LC99 values and 99% confidence limits at log(1) LC99 values and 99% confidence limits at log(1) L2 h 96 h						
M		Sover	5.0127 (5.000+-0.1305)	0.0073 (0.00637-0.008099	0.0062 (0.00304-0.007180	0.0041 (1.00344-0.00461)	12521.95		
wercury		Mercury	0.0698	0.0.528 (0.0436-0-06130	0.0456 (0.0409-6L0367)	0.0436 (1.0368-0.0383)	1136.5		
 Dependent or 	pendant on:			0.843 (0.731-0.936)	0.966 (0.36-0.53)	0.32	154,03		
 Physio-cher 	nical Characteristics	Cadmium	22,42 (20,19-24,30	19.81 (17.39-29.15)	11.91 (9.99-13.95)	8-18 (6.56-9.33)	6-02		
 Hardn 	less	Zinc	50.03 (45.01-55.76)	47.26 (33.48-38.19)	25.65 (23.73-27.74)	19.86 (17.68-23.95)	2.48		
	lestion	Nickel	62,41 (36,18-66,23)	53.21 (1/9.56-58.37)	34.3 (32.9-37.21)	25.32 (22.8-28.62)	1.9		
 Speci 	es	Chromium	74,25 (61,52-105,6)	57.97 (1/9.14-63.48)	53.43 (49.21-61.67)	49.29 (13.63-36.39)	1.00		
Devel	opmental Stage	*95% cordide	(61.52-105.6) nce limits cannot be	(19,14-63,48) calculated.	33.43 (49.21-61.67)	43.27 (13.43-34.39)	1.00		

- Where does it come from?
 Lead Bullets
 Fishing Sinkers
 Mine Wastes
 Paint Chips
 Symptoms
 Lethargic
 Lack of appetite
 hearing/sight boss
 Reproductive tract
 Mictas the kidneys, liver, bloodstream, and even body
 tissue
 Mortality

Lead Lead Bluish-white, silvery, or gray metal. Cumulative poison. Repeated low exposures causes: severe neurological effects, bloodkidney damage, Possible cancer hazard. Reproductive damage (sterility, decreased fertility) and developmental damage to fetus. $\mathbf{0}$ CAS No. 7439

-acidifies amphibian habitat and causes many negative effects to amphibian eggs

- Can...

 Decrease hatching success
 Increase egg mortality
 Delay hatching time
 Reduce size of eggs

A

- associated with amphibian decline worldwide
 Causes changes in the skin affecting water and mineral absorption and oxygen transfer in lungless amphibians.
 Copper presence may decrease the effects of chytrid on some species of larval amphibians (ex. *H. chrysoscelis*) by inhibiting growth of *Bd*

Rate of heavy metals added to the environment exceeds removal by natural processes. Often removed from wetlands through precipitation and absorption through soils and plants)

-Mining→ Dublin, Ireland. Tailings are run through plants that can survive larger metal concentrations before entering wetland areas.

- Many Varying Effects
 Environmental Accumulation
 Multiple Sources
 Industrial Effluence
 Mining Runoff
 Compounding Effects of Other Stressors
 Disease (Chytridiamycosis)
 Poliutants (terbicides)
 Amphibian Declines
 Not only does Heavy Metal Poliution affect Amphibians, but it affects all types of wildlife

- Abbasi, S. A., R. Soni. 1984. Teratogenic effects of chromium (vi) in environment as evidenced by the impact on larvae of amphibian *Rana Tgrina*: implications in the environmental management of chromium. *International Journal of Environmental Studies*. 23: 131-137. Carey, C. 1999. Amphibian declines: an immunological perspective. *Developmental & Comparative Immunology*. 23: 459-472. Freda, J. 1991. The effects of aluminum and other metals on amphibians. *Environmental Pollution*. 71: 305-528.

- 305-328. Grillitsch, B., A. Chovanec. 1995. Heavy metals and pesticides in anuran spawn and tadpoles, water, and sediment. Toxicological & Environmental Chemistry. 50:131-155. Herkovits, J., L. A. Helguero. 1998. Copper toxicity and copper-zinc interactions in amphibian embryos. Science of The Total Environment. 221: 1-10.

- Renerative Science Continued Science Scie

http://www.conserve-energy-future.com/causes-effects-of-industrial-pollution.php http://www.herpsoftexas.org/content/southern-leopard-frog

