

Lecture Outline

- Introduction to Fertilizers
- Case Studies and Research
- Why Fertilizer Effects are So Damaging

Introduction to Fertilizers

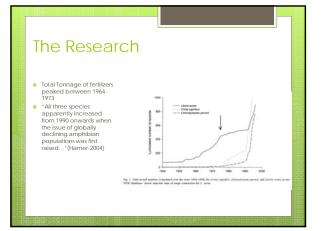
- A fertilizer is a substance applied to soils or to plants that provides supplemental nutrients in order to optimize growth and development
- Plants need a number of different chemical elements
- Carbon, Hydrogen, Oxygen (Found in the air) Nitrogen, Phosphorous, Potassium
 Needed in the Greatest Quantity
- Sulfur, Calcium, Magnesium, Boron, cobalt, copper, iron, manganese, molybdenum and zinc
- Found in Most soils

The Problem With Fertilizers

- Misuse and over application • Results in runoff of chemicals
 - Leaching of chemicals into water sources
- "Waterbodies situated within agricultural areas receive run off from surrounding land where fertilizers and pesticides are applied, and concentrations of nitrogen and phosphorus in these often exceed levels encountered in non-agricultural areas." (Hamer-2004)

The Problem With Fertilizers

- Fertilizers are extremely common
- Used on both large and small scales
 Commercial and


Residential

Problems With Fertilizers

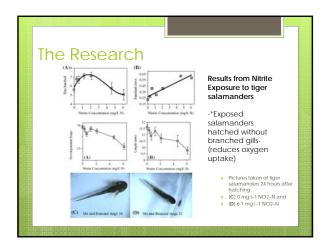
- Direct application to water is often overlooked
- Used both for Agriculture and Aquaculture
 - Farm ponds connected to nearby drainages

- Compared historical records of fertilizers with current and past frog populations
 golden bell frog (Litoria aurea)
 - common eastern froglet (Crinia signifera)
 - Striped marsh frog (Limnodynastes peronii)

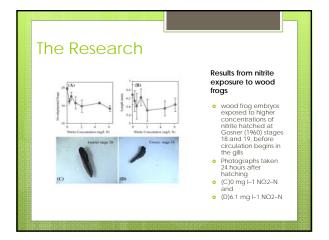
- The experimental evidence showed differential sensitivity to fertilizers between L. aurea and two non-declining frog species.
- Significantly fewer *L. aurea* tadpoles survived to metamorphosis in the two highest concentrations of ammonium nitrate (76 and 78% survival, 10 and 15 mg/l, respectively:F3,20 = 6.32, P = 0.003) and in 15 mg/l of calcium phosphate (82% survival; F3,20 = 3.44, P = 0.04) compared to the control (Fig. 3).

The Research

Agent Roof (2005-0):119-127 (0.01-0):0075-00452-009-0047-1


Sublethal effects of nitrite on eastern tiger salamander (Am/systoma tigrinum tigrinum) and wood frug (*Kana* sylratica) embryos and larvae: implications for field populations Ken 1. Gate-Kei

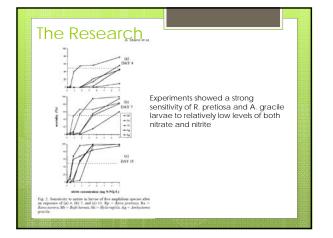
Rescient 17 August 2007 Accepted 15 April 2006 Telebiled colour. 7


Absoint Ephanoma pende, estati ana haria tegitapa antegitaria atras anginatta horeas ana dia disandra di angua, da sanka la tepama te tehera anomadiana. As sanka la tetang atras anathar horeas atras atras atras atras atras atras atras atras anathar horeas atras atras atras atras atras atras atras terrates atras atras atras atras atras atras atras atras terrates atras atras atras atras atras atras atras atras terrates atras atras atras atras atras atras atras atras atras terrates atras terrates atras terrates atras terrates atras terrates atras terrates atras -This study explores the indirect effects of Nitrites and Nitrates on Amphibian Populations.


- *Nitrite can cause direct lethal effects in amphibians but the sublethal effects, especially on amphibians that breed in ephemeral ponds in agricultural regions, need to be explored.*(Griffis-Kyle-2005)

- Three wood frog egg masses were collected from three ponds and 18 eastern tiger salamander egg masses were collected from six ponds in 2004.
- Early tadpole and larval survival were tested at nitrite concentrations of 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg I/ NO2–N.
- "For the eastern tiger salamander, nitrite has a significant negative effect on developmental stage at hatching controlling for the size of the hatchling" (Griffis-Kyle-2005)

SETAC PRESS


erry, Vol. 18, No. 11, pp. 2816–2819, 1999 0 1999 SETAC Prantel in the USA 8730-7288-99 SF00 + 00

SENSITIVITY TO NITRATE AND NITRITE IN POND-BREEDING AMPHIBIANS FROM THE PACIFIC NORTHWEST, USA

ADGLPO MARCO.⁺¹ CONSULIO QUILCIANO.², and ANDREW R. BLAUHTIN⁵ TDepartments do Buddyn Annet, Universial do Mannae, Valenaer, Valenaer, 1977, Span do Statustica et al. (Statustica), 1978, Span (Department of Zeinige, Oregan into University, Oregin (Origon 1971), USA (Revenuel 27 July 1978, Accepted 11 March 1999)

Abstrate-in artist oppendiemen, we studied the efficient of native and antitive induces in moreh hashed harvise of live sponse of some offset of the stars, some liver and some sponse induced fitting gaverus, strates live supervised, showed dampalations and and stars and stars and antitive strategistic strategisti

- R. pretiosa, R. aurora, B. boreas, H. regilla, and A. gracile larvae tested
- Four Species of Amphibians tested for sensitivity to nitrate solutions and all five species tested for sensitivity to nitrite solutions.
- Both the nitrites and nitrates exposures eventually resulted in high rates of mortality, however, there was high variability between the species with regards to early sensitivity.

• "Many public water supplies in the United States contain • Many public water supplies in the United states contain levels of nitrate that routinely exceed concentrations of 10 mg N/L [8]. In the Willamette Valley, average nitrate concentrations of 17.8 and 21.9 mg N/L were recorded in water samples from some crop soils receiving recommended rate of nitrogen fertilization." (Brandi-Dohrn-1997)

Day	R. pretioza	R. aurora	B. boreas	H. regilla	A. gracile
4	6.82 (0.615)	5.59 (1.446)	>7.0	5.50 (0.742)	1.90 (0.737
7	1.30 (0.345)	4.00 (1.021)	5.38 (0.646)	3.60 (0.650)	1.54 (0.598)
15	0.57 (0.033)	1.19 (0.268)	1.75 (0.612)	1.23 (0.312)	1.01 (0.279

Marco-1999

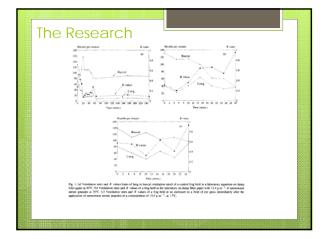
The Research

SETAC PRESS

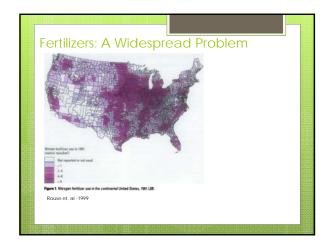
0 2999 SETAC Printed in the USA 8730-7288-99 SE 00 + 30

THE EFFECTS OF NITRITE ON BEHAVIOR AND METAMORPHOSIS IN CASCADES FROGS (*&ANA CASCADAE*)

ADOLFO MARCO*7 and ANDREW R. BLAUNTEIN; non de Bologia Annual, Universidad de Salananca, Sulananca 17071, Span mart of Zeology, Oregon State University, Corralis, Oregon 97331, USA Departu SDepartu (Received 26 May 1998: Accepted 27 July 1998)


rest—supplies a summaphron in provide if during sampling supportantion, during the life in a sequence support shows with the set of the start of the set of the set

Name Room



	The Research	
	ELSEVIER Appealers, European of Economics († 1929) 19-34	
	Short communication	
1000	The effect of ammonium nitrate fertiliser on frog (Rana temporaria) survival	
	R.S. Oldham ^{1,*} , D.M. Latham ⁴ , D. Hilton-Brown ⁴ , M. Towns ⁴ , A.S. Cooke ^b , A. Burn ^b	
	⁶ Department of Biological Sciences, De Montfort University, Laicenter LET 990, UK ⁶ English Namee, Northensone House, Prochemough PE1 1014, UK	
	Accepted 17 June 1996	
	Abstract	
	The as a sing of an interaction flocitizer to contents flogs (these messarily in the single of the single s	

- Common frogs (Rana temporaria) were exposed to multiple levels of concentration of ammonium nitrate
- All subjects exposed to concentrations over 3 g/m² showed significant signs of effect

Tana .	- 10	nen'	-97)	- 10	-173	uni.	-87		÷	-	igi'	- 10	w	-81	an'	-	×.	- 100	an' rag	-	w.	ei - 18	140	- 10	w.	-	anî y	<u>.</u>	er' an	ć.,	6.00	-	(240	-	
- Line	18	10	з.	7	Ξ.	3	5	1		1		1	3	-	з.	Ξ.	Ξ.	÷.		-	-	* *		-	-	Ξ.	Ξ.	-		2.3	5.2	1	12	4	-	2
and the second sec	1.2		-	2	-	5	-	-	-	-	5	- 1	- 2	-	-		-	5	: :	-	5	: :		- 5	2	Ξ.	5.1	Ξ.	2 3		: :			-	-	
	-	-	100	-	-	-		1.00	-	-	-	-	-	-	-	10	140	10.		- 10	-	6. A	1.00	-		-	-	-				-	1.100	-	10	M. 1
		-				-	-	-	-		-	-	-		100	-	10.				-					-	-					-		-	-	in. 1
	-	-	100	-	-	-		-	-			10		-			100	-		10	-	16 10		-	-16	*	-		* *	5.3		-		-	-	54. 1
- 10.0	12	τ.	-	5	2	Ξ.	-	-	- 5	- 22	- 22	- 22	- 22	-	а.	ч.	÷.	Ξ.		-	-		12	- 22	Ξ.	Ξ.	а.	Ξ.	2.3					- 2	-	2.3
di la dia			-			100	**	*	-	-	-	-	-	**	-	-	-	ы.	**	10.	-	-				-		-			e	-				-
Tall of the		-		w.		-	-		10.		10	-		-			141	14.		10.	-	10. 10	- 10	14	10.	100	-		14. N			- 14	- 10.	10	-141	14. I
int Cardina -	1.2	2	1	з.		τ.	Ξ.	-	-	10		- 12	100		Ξ.		100		10. 10 10. 10	-				- 100		÷.	-		40 N		5 2			- 2	-	
	1.4		10		П.	-	-	*	-	-	-	-		-			Ψ.	**	0, 4	70	-11	17 . 3	1	-	40	-	P	10	4, 4			-	- 10	-	-	
								-																												
f	erti	liz€	∋r,	se	ele	ct	ec	3 5	Sta	ite	es,	19	964	1-2	01	0 ((U:	SD.	e re A)			-			-		rui	- -	off	ir	nto				-	
f	erti -Stu	lize JC	ər, lie	se es en	ele ha t i	ct av	ec e nn	sh sh	io io ig is i	nte wi ru wi	es, n t ini h∈	19 th nii ere	at ng e t	1-2 1(1 W he	01 D-2 Va	0 i 25' ite e a	(U: % er. are	sD of (N	A)	ro	ge	en f -19	er 98/	tili 4)	zei	rs							a	-	-	
f	erti -Stu	lize JC	ər, lie	se es en	ele ha t i	ct av	ec e nn	sh sh	io io ig is i	nte wi ru wi	es, n t ini h∈	19 th nii ere	at ng e t	1-2 1(1 W	01 D-2 Va	0 i 25' ite e a	(U: % er. are	sD of (N	A) ¹ nit 1ait	ro	ge	en f -19	er 98/	tili 4)	zei	rs							а			
f	erti -Stu	lize JC	ər, lie	se es en	ele ha t i	ct av	ec e nn	sh sh	io io ig is i	nte wi ru wi	es, n t ini h∈	19 th nii ere	at ng e t	1-2 1(1 W he	01 D-2 Va	0 i 25' ite e a	(U: % er. are	sD of (N	A) ¹ nit 1ait	ro	ge	en f -19	er 98/	tili 4)	zei	rs							а		-	
f	erti -Stu	lize JC	ər, lie	se es en	ele ha t i	ct av	ec e nn	sh sh	io io ig is i	nte wi ru wi	es, n t ini h∈	19 th nii ere	at ng e t	1-2 1(1 W he	01 D-2 Va	0 i 25' ite e a	(U: % er. are	sD of (N	A) ¹ nit 1ait	ro	ge	en f -19	er 984	tili 4)	zei	rs							a		-	
f	erti -Stu	lize JC	ər, lie	se es en	ele ha t i	ct av	ec e nn	sh sh	io io ig is i	nte wi ru wi	es, n t ini h∈	19 th nii ere	at ng e t	1-2 1(1 W he	01 D-2 Va	0 i 25' ite e a	(U: % er. are	sD of (N	A) ¹ nit 1ait	ro	ge	en f -19	er 984	tili 4)	zei	rs							а		-	

Fertilizers: The Big Picture • Its Both Residential and Commercial Use

Aquaculture and Fertilizers

- Application of Fertilizers to ponds
 Common practice Is to add nitrogen and phosphorous
 This spike in nutrients results in high amounts of zooplankton and can result in an algal bloom
 Without constant fertilization, these algae will die.
 Bacteria will decompose and consume all of the oxygen in the water.
 This application of fartilizers in pat always intercingally.

 - This application of fertilizers is not always intentionally

- Summary Exposure to Nitrates and Nitrites have devastating effects on early development that result in mortality
- Effects predation rates, oxygen uptake efficiency, risk of desiccation etc...
- Adult Anuran Species can also be affected (Need more research to be done)
- Fertilizers are a problem from misuse and over-application
- Fertilizers are the significant cause for amphibian declines because it effects a wide range of distributions and causes many complications that eventually lead to mortality. mortality

References

- Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Kanasylvatca). Ecology 17:1599–1608
 Brandi-Dohm FM, Dick RP, Hess M, Kauffman SM, Hemphill DD Jr, Selker JS. 1997. Nitrate leaching under a cereal ryce cover crop. J Environ Quai 24 Edit 18-188.
 Matland, P.S. 1984. The effects of eutrophication on aquatic wildlife. Lenkins, D., (ed.) Applications and the environment. Cambridge, NERCHT, En U180. (IE Symposium, 13).
 Marco, A, Quilehano, C., Blaustein, A.R., 1999. Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific northwest. USA Environ. Toxicol: Chem. 18, 2836-2836.
- 2839.
 Marco, A., Blaustein, A.R., 1999. The effects of nitrite on behavior and metamorphosis in cascades frogs (Rana cascadea). Environ. Toxicol. Chem. 18, 949–949.
 Oldham RS, Laham DM, Hillon-Rovan D, Iowrs M, Cooke AS, Burn A. The effect of ammonium nitrate fertiliser on frog (Rana temporaria) survival. Agric Ecosyst Environ
- Oldham Ks, Lamam Lwn, newsream Laman •

