# Herbicides

And Amphibian Decline

Caitlin Jarv WFS 433

#### What Are Herbicides?

- Herbicides are used to control unwanted vegetation by farmers, foresters, managers, and everyday people
- In 2007 Herbicides accounted for 40% of pesticide use in the US and the world- 2,096 million lbs worldwide, 531 million US (EPA 2007)
- Herbicides of some sort are found in 57% of US streams (Biello 2008)
- Many categories and modes of action

# **How do They Harm Amphibians?**

- Kill algae food source?
- Absorption and direct effects
- Increase desiccation later in life
- Interfere with the endocrine system
- Increase chance of infections
- Lead to increased parasites in the habitat
- · Other indirect effects
- It can be hard to quantify the effects of herbicides in the wild, and there are multiple indirect effects.
   Much of the research is done in controlled settings.

| <br> |  |
|------|--|

#### What are Some Common Herbicides?

- Atrazine and Glyphosphate (Roundup, Touchdown Total of Monsanto Corp., many others) are the most commonly used herbicides in the US and probably worldwide (Long 2005, Rohr 2004)
  - Use of herbicides is on the rise- genetically modified Roundup resistant crops are leading to increased Roundup use and superweeds
- 2,4-D (the active ingredient in Agent Orange) is also widely used, and DOW Chemical is awaiting approval to sell 2,4-D resistant crops



# Roundup

- Contains protein disrupter Glyphosate and Polyethoxylated tallow amine (POEA), designed to increase efficiency of herbicides by penetrating plant cells
  - 2005 study by Relyea showed high levels of mortality due to the combination of the active ingredient and surfactant

# Roundup

- Previous studies suggested that soil can break down the toxic components of Roundup, but this takes too long (half life 7-10 days), and soil type made little difference in Relyea's experiment
- The EPA classified Glyphosate as having a slight to moderate effect on amphibians, and little effect on other vertebrates, thus people considered it safe
- But this testing was only on *Glyphosate*, and few species were used. Turns out that *Roundup* is highly lethal to amphibians! (Relyea 2005)



#### Roundup

Tadpoles- exposed to 3.8 mg AI/L for 20 days

- Gray tree frog survival reduced from 75% to 2%
- American toad survival reduced from to 97% to 0%
- Leopard frog survival reduced from 98 to 4%
- Mortality among species over 20 days 98% (Relyea 2005)

# Roundup

Too long
Too

Juvenile frogs- exposed to 1.6 mg AI/L for 24 hours

- Wood frog survival reduced from 96% to 32%
- Gray tree frog survival reduced from to 100% to 18%
- Fowlers toad survival reduced from 100% to 14%
- Mortality across species after one day 79% (Relyea 2005)

# Roundup

- Roundup probably does not cause mortality by killing algae- deaths occurred quickly, in other studies algae increased because there were too few tadpoles to consume it, others still died when fed fish flakes (Relyea 2005)
- The surfactant that makes it more toxic to weeds also helps it to penetrate animal cells
  - Commercial testing focuses on active ingredients

# Roundup

 This experiment shows that the active ingredient and surfactant in Roundup is highly lethal to a variety of frogs at the tadpole and juvenile stage (Relyea 2005)



# Roundup

 LC50 for larval salamanders at 96 hours was 2.7 to 3.2 mg AI/L at 96 hours for a variety of species (Reyla 2009)



#### **Roundup Use on the Rise**

- "Twenty-one weed species around the world are now resistant to Glyphosate, up from zero in 1996 -- the year Monsanto started marketing its genetically engineered Roundup Ready crops." (Mercola.com 2011)
  - Genetically modified crops have caused a 7% rise in pesticide use
- Tests with mammalian species show more ways Glyphosphate is a problem... potentially to other vertebrates (Ho 2012)
  - Yet the European Union is considering letting 100-150X more Glyphosphate into the environment

#### **Atrazine**

- Systematic herbicide that disrupts photosynthesis
- Many problems with amphibians!
- Lithobates pipiens exposed to 0, 0.1, 25 ppb
  - Levels often seen above this, even in rainwater
- Developed eggs in testes, low sperm count, etc.
   Endocrine disruption
- Transect run from Utah to Iowa, same problem was seen
- (Hayes et al., 2002)



#### **Atrazine and Other Stressors**

 Streamside salamanders (Ambystoma barbouri) exposed at various levels from egg to metamorphosis with limited and unlimited food and in presence or absence of a dry down (Rohr et. Al, 2004)







#### Atrazine

- The higher concentrations of Atrazine decreased hatching success and survival
- Larvae exposed to high concentrations of Atrazine were not affected any more by dry down, those exposed to the lower levels were – Why?
- Atrazine decreased metamorph size, especially when coupled with low food. It also decreased the length of the larval stage.
  - Atrazine increased larval activity, but did not affect feeding rate

#### **Atrazine**

- So, at least some larvae survived, even at high exposures and multiple stressors, even if they are smaller. Good, right?
- Maybe it doesn't matter...

#### **Atrazine**

- Atrazine exposure of streamside salamanders in early life was shown to cause an increase in the chance of desiccation months later (Rohr 2004)
- Alters gender
- Atrazine is persistent in the environment, may take months to a year to break down
- Highly mobile, it has been found above the Arctic Circle (Rohr and McKoy 2010)
- There is one animal that benefits from Atrazinethe snail that is a host of trematodes (Rohr 2008)

| • |      |
|---|------|
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
| • |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
| • |      |
|   |      |
| • |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   | <br> |
|   |      |
| • |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   | <br> |
| • | <br> |
|   |      |



#### **Are Herbicides All Bad?**

- In class you have heard that herbicides are used in conservation management
- Herbicides can be used to control unwanted vegetation
  - Some plants are dangerous to frogs!
  - Invasive plants leech toxic chemicals into the water
- But the positive aspects of herbicides do not outweigh the negative ones, especially with improper use

# Why Herbicides are the Most Important Factor!

- They increase trematodes and endocrine disruption
- Pesticide chemicals in general and the producing factories can contribute to global warming, acid rain, and ozone depletion
- By making agriculture easier they encourage fragmentation and urbanization
- Also by expanding agriculture they encourage more fertilizers and insecticides to be used
- Roads are built to make transportation of herbicides and farm equipment easier
- Generally weakens amphibians to pathogens and other infectious agents - and there are a lot of these to consider (Chytrid, Rana, Redleg diseases, alveolates, Saprolegnia)

Many of our anthropogenic changes to the environment are only possible because of agriculture- and herbicides greatly enhanced and expanded agriculture

#### **Summary**

- Atrazine and Glyphosate are two commonly used herbicides worldwide, and use is on the rise
- The POEA surfactant included with Roundup is largely responsible for deaths
- Atrazine deforms male frogs, increases chance of infections and number of parasites, increases desiccation, is highly mobile and persistent
- Herbicides are a contributing factor to other causes of decline
- And much is unknown...
  - Caecilians?
  - Bio-magnification from algae and dead amphibians?
  - Effects in lab rats?
  - 2.4-D GMOs?
- By proper herbicide use problems will be reduced, but alternate chemicals are still needed!

#### References

- Renner, R. 2003. More evidence that herbicides feminize amphibians. Environmental science and technology, 37 (3), pp 46A–46A. <a href="http://pubs.acs.ong/slo/labs/10.1021/es/333547">http://pubs.acs.ong/slo/labs/10.1021/es/333547</a>
  Altraine FAGS. <a href="http://pubs.acs.ong/slo/labs/10.1021/es/333547">http://pubs.acs.ong/slo/labs/10.1021/es/333547</a>
  Antraine FAGS. <a href="http://www.scientificamenican.com/article.clm/adr-world-without-frogs-ballot). World without regions com/article.clm/adr-world-without-frogs-ballot). Phys. 2007. Peds and Usage <a href="http://www.scientificamenican.com/article.clm/adr-world-without-frogs-ballot).">http://www.scientificamenican.com/article.clm/adr-world-without-frogs-ballot). Phys. 2007. Phys. 3007. Phys. 3007.
- Ho, M. 2012. Why Glyphosate Should be Banned: A Review of its Hazards to Health and the Environment. <a href="http://permaculturenews.org/2012/11/01/why-glyphosate-should-be-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-banned-a-review-of-its-hazards-to-health-and-the-band-a-review-of-its-hazards-to-health-and-the-band-a-review-of-its-hazards-to-health-and-the-band-a-review-of-its-hazards-to-health-and-the-band-a-review-of-its-hazards-to-health-a-review-of-its-hazards-to-health-a-review-of-health-a-review-of-its-hazards-to-health-a-review-of-its-hazards-to-health-a-review-of-its-hazards-to-health-a-review-of-its-hazards-to-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-review-of-health-a-revie HO, M. 2012. Vivi Graphocological Control of the Co