Amphibian Estivation and Hibernation

Lecture Outline

I. Introduction
II. Estivation
III. Hibernation
IV. Future Research

Amphibians range widely over globe

Why?
• Ability to withstand harsh conditions
• Life history needs met in short periods when conditions favorable
• Main challenges:
 1) Starvation
 2) Cold Hibernation
 3) Drought Estivation

• Solution: conserve resources as much as possible until next active period

Estivation

Allows survival in extreme desert conditions:
- Some species can survive for several years without rain

Metabolic reduction – conserve energy

Many reduce H$_2$O loss by:
- Burrowing into moist soil
- Forming cocoon

Characteristics of Estivators

• Inhabit desert-like environments
 – Seasonal / variable rainfall
• Most highly terrestrial
 – Return to water to breed (some exceptions)
• Many nocturnal

Boutilier et al 1979: Bufo marinus (non estivator in nature)
- Estivation induced in lab
Suggests: All fossorial amphibians may have metabolic reduction capability
Estivators – Life History

- Opportunistic Breeders
 - Triggered by rain
 - Lay eggs in ephemeral pools
 - Larvae develop quickly
 - After rains, subadults burrow into loose soil

- May spend most of life estivating

Estivators – Life History Example

- Some Myobatrachidae:
 - Lay eggs in dry depressions
 - Don’t hatch until flood occurs
 - Arrested development of embryos
 - Slow rate of \(O_2\) consumption
 - Withstand up to 90% \(H_2O\) loss from egg
 - Can last several weeks if air is humid
 - Larvae also can reduce metabolic rate
 - Survive several days without rain

Aquatic Estivators

(small group)

- Includes:
 - Ambystoma
 - Siren
 - Amphiuma

- Burrow into mud after water dries up
- Remain encased in hardened mud until rainy season
- Some shelter under loose debris or in other animals’ burrows
Estivation: Cues for Emergence

• **Rain**
 – May extend active season if rain continues

• **Photoperiod**
 – Semour (1973): Toads kept in constant light will come to surface

• **Temperature**
 – May not emerge during rains if temp too high or low

Burrow Microenvironment

• **Important variables**
 – **Temperature**
 – **Soil water tension** (Affinity of soil for H₂O)
 – **Conc. of respiratory gases**

 Determined by depth, soil type, climate

Temperature:
 - Determines Metabolic rate (fuel usage)
 - Adjust by digging deeper – loose soils only

Constraints to Estivation Time

• **Starvation**
 – Accumulate resources during feeding period

• **Water loss**
 – Adapted to function when dehydrated
 – Conserve / Store water
 • Absorb H₂O from soil
 • Waterproof cocoons
Cocoons

- Prevent evaporation
- 2 Types:
 1) Single / multiple layers of shed skin (stratum corneum)
 2) Layer of secreted mucous
 - *Siren intermedia*

Estivation – Withstanding Water Loss

- Water storage
 - Amphibian body: 77 – 83% water (mammals 70%)
 - Desert anurans: Store water in bladder to absorb later
- Take up H2O from soil – permeable skin
 - Some species accumulate urea
 - Increases osmolarity of body fluids
 - Also assists in metabolic reduction
 - *Muir et al 2007*

Estivation - Electrolyte Balance

- Problem: Buildup of urea is dangerous
 - Product of metabolism
 - Denatures proteins, disturbs enzyme function
- How do amphibians deal with this?
 - Elasmobranch fishes produce solutes such as methylamines to counteract
 - Has not been found in anurans
 - Possible modifications to protein structure
Estivation - Metabolism Reduction
- Allows prolonged estivation without food
- Regulated by changes in
 1) Enzyme / protein activity
 2) Subcellular location of enzymes
 3) Anabolic uses of carbohydrates

 Within 3 hrs, O2 uptake decreases to 30% of resting

Estivation - Triggers for metabolism reduction
- Poorly understood
- Possible physiological triggers
 - pH change: acidosis common but more likely a result than a cause
 - Hormonal control
 - Opiates
 - May maintain dormancy in *Bufo marinus*

Estivation - Fuel Reserves
- Lipids: from body fat and organs
 - Primary energy source during estivation
 - *Scaphiopus*: 72% (Jones, 1980)

- Carbohydrates
 - *Scaphiopus*: 5%

- Protein
 - Last resort (only when other sources used)
 - *Scaphiopus*: 23%
Estivation - Gas Exchange

- Respiration necessary to use fuel efficiently
- Difficult in mud or cocoons

1) Cutaneous (Scaphiopus)

2) Pulmonary (Pyxicephalus adspersus – cocoon forming)

Hibernation – adaptation to extreme cold

- Frogs are northernmost ectothermic tetrapods

- Salamanders also reach high latitudes

Distribution limits – hypotheses

- Ability of larvae to overwinter
 - Limits salamanders
 - Frogs more tolerant of low oxygen than salamanders
 - Generally, only larvae of aquatic adults can overwinter
 - Frogs: Ranids only

- Other factors:
 - Food availability
 - Cold tolerance of adults
 - Length of breeding season
Hibernation - Responses to cold and starvation

- Reduce metabolism
 - Result of temp decrease
 - Not always dormant: some move and feed

- Accumulate lipid reserves before winter
 - Depend on lipid oxidation for fuel during hibernation

- Adjustments to enzymes and proteins produced by organs
 - Optimize low-temp function
 - More efficient metabolism

- Adjust cellular membrane function
 - Change physical properties of membranes for optimal function
 - Permeability, enzyme and transport activities, receptor and neural functions

Factors:
- Temperature
- Moisture
- O₂ level
- Protect from predators
- Supply cues for emergence

1) Submergence under water or ice
 - Prevents: freezing, desiccation
 - Risks: hypoxia, salt loss

2) Hibernate in burrow
 - Prevents: hypoxia, predation
 - Risks: freezing, desiccation

3) Stay on land (rare)
 - Tolerate freezing
 - Disadvantage: requires intracellular changes

Hibernation - Caudates

- Aquatic species
 - Usually overwinter in water
 - Many remain active

- Terrestrial species
 - Hibernate on land
 - Plethodontids:
 - Intolerant of freezing
 - Many burrow to avoid low temps
 - Remain active, feed underground

Hibernation - Site Choice
Hibernation - Anurans

- **Bufonidae, Pelobatidae**
 - Hibernate underground
 - Not freeze tolerant

- **Hylidae**
 - Not good at digging
 - Use pre-existing burrows, crevices or debris

- **Ranidae**
 - Hibernate underwater (R. Sylvatica exception)

Terrestrial Hibernation

1) **Avoid subzero temp (most)**
 - Find moist, aerated hibernaculum
 - Use stored fat reserves

2) **Tolerate Freezing**
 - *Rana sylvatica, Hyla versicolor, H. crucifer, Pseudacris triceriata*
 - Adaptations:
 - Permit extracellular ice formation
 - Regulate cell volume
 - Protect subcellular organization

Hibernation - Cryoprotectants

- Important in amphibians that tolerate freezing
- Solutes that protect cellular structure

1) **Colligative**: Reduce osmolality of body fluid
 - Prevent too much extracellular ice from forming
 - Prevent intracellular volume from becoming too low

2) **Membrane**: Protect subcellular organization
 - Trihalose and proline: stabilize membrane
 - Glucose or glycogen: stabilize protein structure
 - Costanzo and Lee (2005): Urea acts as a cryoprotectant

Video: http://www.youtube.com/watch?v=FjrJkFspM
Aquatic Hibernation

Anaerobic conditions
- Cutaneous O₂ exchange impaired by boundary layers
 - Immobile layer of water next to skin
 - Amphibians can break with body movement
- Affects cardiovascular function
 - Decrease in heart rate, plasma volume
- Changes osmotic concentration
 - Increases body water
- Instructor 2001: Low O₂ causes reduced cell membrane permeability in *Rana temporaria*
 - Reduces energy requirements

Hibernation – Emergence Cues

- Temperature
 - Most important
 - Evidence: re-emerge on warm days in winter
- Rain
 - Especially important for terrestrial caudates
 - Necessary for migration without desiccation
 - Increases hibernaculum temperatures, melts frost

Future Research

- Microenvironments of estivators and hibernators
- Control systems
 - Mechanism for metabolic reduction
 - Estivators: alteration of ventilation and effect of CO₂
 - Aquatic hibernators: control of fluid and ion balance, cardiovascular control in hypoxic conditions
- Formation of urea
- Formation of cryoprotectants
- Internal signals for emergence
- Reestablishing body function after thawing