Fertilizers and Eutrophication

The Main Cause of Amphibian Declines

Rachel Dutkosky WFS 433 April 2nd, 2009

Objectives

- What is eutrophication?
- General effects on amphibian quality of life
- Indirect effects on amphibians
- Space / time effects on amphibian habitats

What is Eutrophication?

Natural aging of lakes/streams due to nutrient enrichment

- -Nitrogen(N)
- -Phosphorus(P)
- -essential for plant growth
- -excess nutrients promote heavy algae growth
- -debate over which excess nutrient is most detrimental

Eutrophication accelerated by human activities that increase nutrient loading rates to water

Sharpley et al. 1999

Nitrogen in the aquatic environment					
• Ammonium ion NH ₄ +	H H				
• Ammonia NH ₃		н			
Nitrite NO ₂	·-1 O ·-1				
• Nitrate – most a NO ₃ -	bundant, least toxic				

Nitrogen Concentrations				
Natural N levels in groundwater ~3 mg/L				
anthropogenic contamination > 3 mg/L				
In aquatic ecosystems near agriculture and urban a [NO ₃ -] levels > 100 mg/L	ıreas			

Excess Nitrogen Sources

- Fertilizers

 agricultural and urban

 main focus
- Livestock
- Precipitation
- Exhausts from cars and industry
- Industrial and human wastes

Enters ecosystems through runoff, percolation

Nitrogen-Based Fertilizer Use in USA

25 years

• 1960: 2.5 million tons ~11.9 million tons • 1985:

Excess nutrients affect amphibian quality of life

Permeable skin absorbs nitrogen

Many studies provide evidence of harmful effects of excess N:

-reduced growth, feeding, and mobility of adults leads to weight loss and mortality

-Positive correlation: [NO₃-] and malformations

Amphibians not affected in the same way

- More difficult to identify and solve the problem of excess nutrients
- Reason why fertilizers are the #1 cause of declines

Rouse et al. 1999

Indirect Effects of Fertilizers

Eutrophication affects tadpoles by promoting <u>multi-host</u> <u>parasite systems</u>

Trematode parasite *Ribeiroia ondatrae*-infects → birds→ snails→ <u>amphibian larvae</u>

Johnson et al.,2007

- Two related mechanisms to explain how snail hosts affect tadpoles:
- 1) More nutrients, more resources for more infected snails
- 2) Less mortality of infected snails
 -more resources → larger, stronger snails

Result:

More amphibians negatively affected by snail hosts -malformations, mortality

Johnson et al.,2007

Eutrophication affects various species

Excess nutrients

affect all amphibians, but affects vary by species -mainly negative effects (Peltzer et al.,2007)

harmful affect on amphibian prey (Rouse et al. 1999)
-less food

less harmful or beneficial effects for amphibian predators -more amphibian mortality

Runoff	and	Soil	Leac	hing

- Fertilizers affect wildlife over space and time (Hamer et al. 2003)
- 10-25% of nitrogen applied as fertilizers runs off into adjacent running waters (Maitland, 1984)

Hamer et al. 2003

Fertilizer Use Extends Beyond Agriculture

Urea spread in forests

 Forest fertilizers affect amphibian behavior and survival

Urban settings

lawns, parks, golf courses

Marco et al., 2000

Forest Fertilizers

• Urea – promotes timber growth

Marco, 2000

Fertilizers: The most important factor of amphibian decline

Increase Amphibian vulnerability:

- -parasites
- -diseases stress of excess nutrients
- -deformities greater predator capture
- -mortality

-prey vulnerable to excess nutrients - no food for amphibians

Effects of Fertilizers not isolated:

- -runoff /soil leaching spread excess fertilizers to habitats
- -excess nutrients persist in ecosystems over time
- -continued and increased fertilizer use perpetuates the problem

Works Cited

Hamer et al. 2003. Amphibian decline and fertilizers used on agricultural land in south-eastern Australia. Agriculture Ecosystems and Environment 102: 299-305.

Johnson et al. 2007. Aquatic eutrophication promotes pathogenic infection in amphibians. PNAS 104: 40

Marco et al. 2000. Sensitivity to urea fertilization in three amphibian species. Archives of Environmental Contamination and Toxicology 40:406-409.

Maitland, P.S.1984. The effects of eutrophication on aquatic wildlife. Jenkins, D., (ed.) Agriculture and the environment. Cambridge, NERC/ITE, 101-108. (ITE Symposium, 13).

Peltzer, Paola et al. 2006. Effects of agricultural pond eutrophication on survival and health status of Scinax Nasicus tadpoles. Ecotoxicology and Environmental Safety 70: 185-197.

Rouse et al. 1999. Nitrogen Pollution: An assessment of its threat to amphibian survival. Environmental Health Perspectives 107:10: 799-803

Sharpley, A.N., T.D., T.Sims, J.Lemunyon, R. Stevens, and R. Parry. 1999. Agricultural Phosphorus and Eutrophication. U.S. Department of Agriculture, Agricultural Research Service, ARS–149, 42 pp.