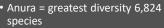


<u>Outline</u>

- Amphibian decline and diversity
- What are Hellbenders???
- How are Hellbenders doing???
- Where are Hellbenders???
- Impact of land use on occupancy
- Conservation implications and future research

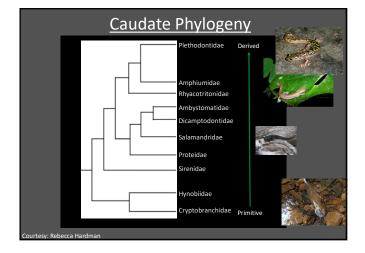
Amphibian declines


- Highest proportion of species threatened with extinction (Cushman 2006)
- Major threats (Beebee and Griffiths 2005)
- Habitat destruction
- Diseases
- Invasive species
- Exploitation
- Climate change
- Amphibians are particularly vulnerable
- Good indicators of environmental conditions

Amphibian Classification and Diversity

Includes three major Orders

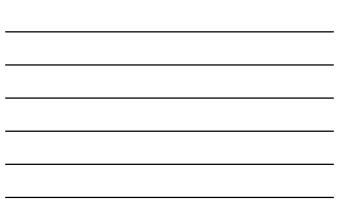
- Anura (Frogs and Toads)
- Gymnophiona (Caecilians) 🎆
- Caudata (Salamanders)



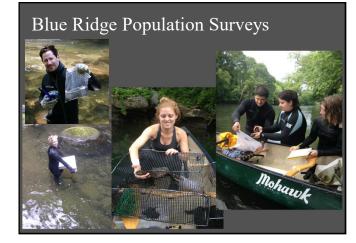
• Caudata = 707 species

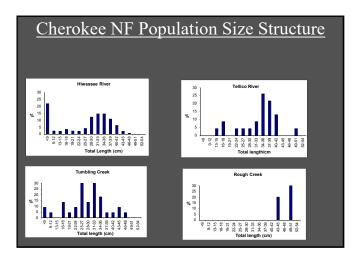
• Gymnophiona = 206 species

Family Cryptobranchidae

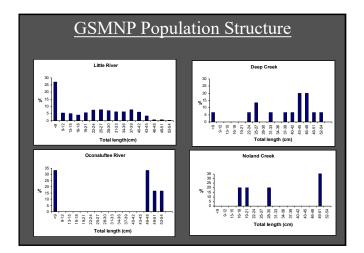

- Crypto- "hidden", -branch "gill", idae "family"
- Two genera (Cryptobranchus and Andrias)

Hellbender Total Length: 1990s

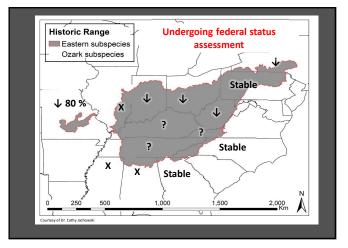

Calfkiller River: 4 hellbenders; 40.2 – 54.5 cm Duck River: 3 hellbenders; 45.4 – 55.5 Collins River: 42 hellbenders; 40.8 – 54.5 Buffalo River: 28 hellbenders; 11.1 – 60.8

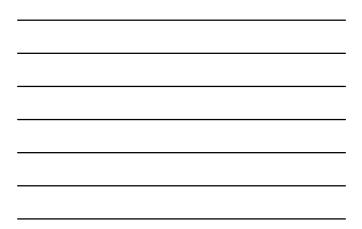


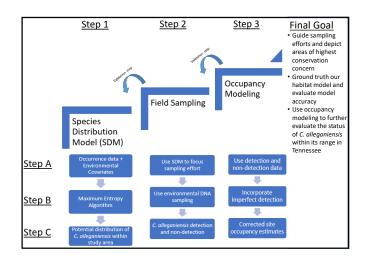
- Calfkiller, Collins, and Duck rivers were sexually mature (Eastern Highland Rim streams)
- By contrast, 25% (n = 7) from the Buffalo River were juveniles (111 mm 253 mm). Western Highland Rim stream

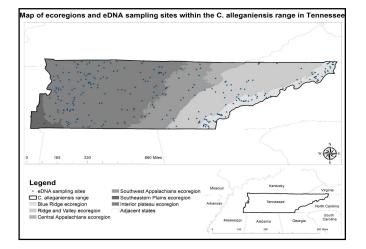


Stream Name	County	<u>Distance</u> Km (mi)	Person Hours Searched	# Hellbenders found
Collins River	Warren/Grundy	27.60 (17.20)	159.0	0
Calfkiller River	White	10.70 (6.60)	89.0	0
Elk River	Franklin	1.00 (0.70)	17.5	0
Stones River	Rutherford	1.10 (0.50)	24.0	0
Richland Creek	Giles	0.50 (0.31)	6.0	0
Duck River*	Coffee	12.14 (7.30)	81.0	0
Duck River	Bedford	15.11 (9.40)	28.0	0
Little Sequatchie	Marion	2.42 (1.50)	10.0	0
Totals		70.57 (43.51)	414.5	0

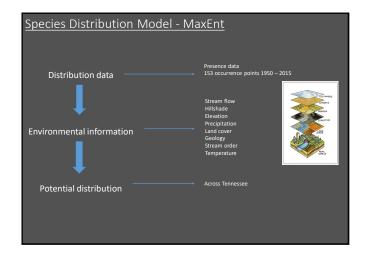




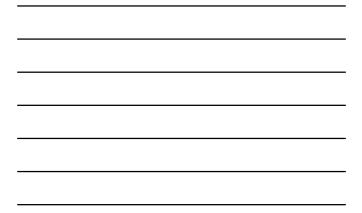


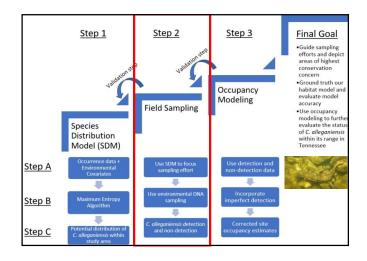


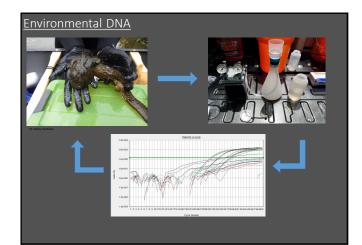
The use of species distribution models (SDM) and environmental DNA to evaluate the distribution of the Eastern Hellbender (*Cryptobranchus a. alleganiensis*) In Tennessee

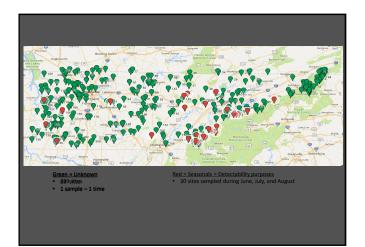


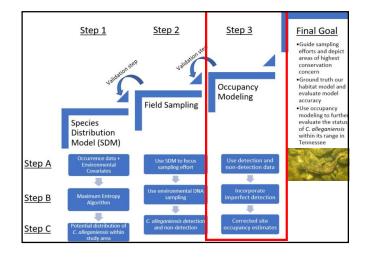






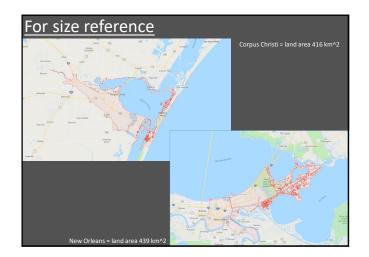






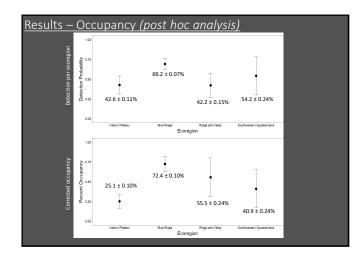
Occupancy model

- Naïve vs. Corrected occupancy
- Modeling techniques described by MacKenzie et al. (2002, 2003)
- Single species
- Single season
- 29 models
- Detection (observation covariate) ->Julian date
- Occupancy (site covariates) -> elevation, geology, Strahler order, land cover, and ecoregion


AIC_c -> evaluate model performance

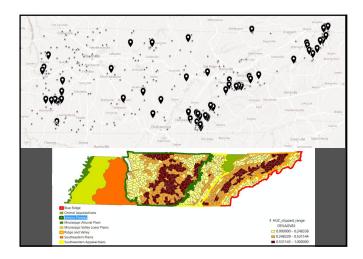
	<u>del</u>	Covariate	Percent contribution (%)
		Strahler order	85.4
Average Sensitivity vs. 1 - Specificity for CRAL	Mean (RUC = 0.941) Mean +i- one stötev	Geology	7.4
	Random Prediction •	Precipitation	2
		Temperature	1.5
		Landcover	0.9
		Elevation	0.9
/		Slope	0.8
/		Hillshade	0.6
00 01 02 03 04 05 06 07 08	0.9 1.0	Stream flow direction	0.5
stewston for_dos	chanife of regularized training gain	for CRAL Without services = With all variables =	

Ecoregion	Suital	ole stream area p	er suitability cat	tegory (km ²)		
	Low	Medium	High	Very high	Total (km ²)	
Central Appalachians	3.09	1.74	0.13	0.00	4.96	
Blue Ridge	29.72	12.07	7.80	5.02	54.60	
Southwest Appalachians	19.33	11.27	2.75	0.13	33.48	
Ridge and Valley	46.75	25.59	22.63	1.91	96.89	
Southeastern Plains	3.59	2.24	0.99	0.76	7.58	
Interior Plateau	102.19	50.64	69.94	2.11	224.88	
Total (km ²)	204.68	103.54	104.25	9.93	422.39	Total (kı
	Percent o	f each suitability	category per ec	oregion (%)		
Central Appalachians	62.39	35.03	2.58	0.00	-	
Blue Ridge	54.43	22.10	14.29	9.19		
Southwest Appalachians	57.73	33.65	8.22	0.39		
Ridge and Valley	48.26	26.41	23.36	1.97		
Southeastern Plains	47.36	29.51	13.09	10.04		
Interior Plateau	45.44	22.52	31.10	0.94		_



<u>Results – Fie</u>	eld Sa	amplin	g		
		Ν	MaxEnt S	Suitability Cate	gory
	Low	Medium	High	Very high	Total (#)
Detection (#)	9	12	19	25	65
Non-detection (#)	59	66	65	29	219
Total (#)	68	78	84	54	284
Detection (%)	13.2	15.4	22.6	46.3	22.9
Non-detection (%)	86.8	84.6	77.4	53.7	77.1

Ecoregions	Detection	Non-detection	Total	Naïve O	ccupancy (%
Blue Ridge	34	36	70	1.0110	48.6
Interior Plateau	17	139	156		10.9
Ridge and Valley	10	29	39		25.6
Southwestern Appalachian	4	12	16		25
Central Appalachian	0	1	1		0
Southeastern Plains	0	2	2		0
Total	65	219	284		-
Occupano	:y (psi) [Detectability (.)	AIC _c	К	
CRALfm19 ecoreg	_3	(.)	383.41	5	0.00
CRALfm6 ecoreg	_3	survey	384.91	6	1.49
CRALfm29 X11_S	TD	ecoreg_3	384.99	6	1.50
CRALfm24 (.)		ecoreg_3	385.07	5	1.65



sults – C	Dccup	banc	y mode	ling		
Ecoregi	ons	Detection	Non-detection	Total	Naïve	Occupancy (%
Blue Ridge		34	36	70		48.6
Interior Plateau		17	139	156		10.9
Ridge and Valle	te and Valley		29	39		25.6
Southwestern A	Southwestern Appalachian		12	16		25
Central Appala	Central Appalachian		1	1		0
Southeastern Pl	ains	0	2	2		0
Total		65	219	284		
	Occupancy	(psi) D	etectability (.)	AICc	K	
CRALfm19	ecoreg_	3	(.)	383.41	5	0.00
CRALfm6	ecoreg_		survey	384.91	6	1.49
CRALfm29	X11_ST	D	ecoreg_3	384.99	6	1.50
CRALfm24	(.)		ecoreg_3	385.07	5	1.65

<u>Discussion</u>

- Limited available habitat for the species within its range in Tennessee
- Ecoregion is a strong determinant of occupancy and detection
- Geomorphology
- Hydrology
- Where are the stronghold populations?
- Ecoregion and occupancy \rightarrow Proxy for effect
- of land use practices
- Legacy effectCurrent effect
- eDNA was an effective tool

Conclusions and Conservation Implications

Habitat degradation seems to be the MVP of hellbender decline

Future conservation of the species may rely on prioritizing populations and areas of highest conservation need • Where would you focus your conservation efforts?

Future research

- Compare microhabitat between areas with declining populations functional populations.
- Quantify sediment input over timeFurther evaluate effect of land use

CONSERVATION TOOLBOX

If you were a policy maker, what would do to improve hellbender conservation in Tennessee?