
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Outline

I. Ranavirus Die-offs and Host Effects
II. UT Research: Host-Pathogen Interactions
III. Anthropogenic Effects and Disinfectants
IV. Can Ranaviruses Contribute to Declines?

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Reported Amphibian Die-offs in North America: Ranavirus


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$

## How does Ranavirus Kill A Host? Routes of Infection



Ranavirus Replication Cycle $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Gross Signs of Infected Amphibians
Edema, Erythema, Hemorrhages, Ulcerations

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## University of Tennessee

Ranavirus Research
Gray, Miller, Hoverman, Haislip, Bryan, Brenes, Hilzinger, Tucker, Hardman, Sutton, Chaney, Brand, Henderson, O'Reilly, and others


## Broad Host Range

Hoverman et al. (2011): 19 Species Tested
Expanded to Expanded to
35 spp (2012)


Impacts of Development
Across Seven Species
Haislip et al. (2011)


ML Estimate: Hatchling - $3 \mathrm{X}>$ Embryo
Larval $-4 X>$ Embryo
Metamorph - 5X > Embryo
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Community Composition Matters:
host identity affects outcome of ranavirus outbreaks in larval amphibian communities


## Objectives

1. Effects of species susceptibility on transmission and the likelihood of a community-level outbreak
2. Determine if highly susceptible species can function as an amplification species

## Treatments

- Completely Randomized Design (5 treatments)
- Species A Exposed Only; Others Not
- Species B Exposed Only
- Species C Exposed Only
- All Exposed
- None Exposed


## -Controlled Exposure

-2-L containers •Ranavirus Isolate = Frog Virus 3•Exposure = 3 days then $\cdot 10^{3}$ PFU/mL -Control = MEM Eagle media distributed to mesocosms

Hoverman et al. (2011)
 ,

## Aquatic Mesocosms

- Mesocosm Site
- Aged to emulate natural conditions
- $n=25$ pools, 5 pools per treatment
- Each pool = 10 random larvae/species
- Duration = 60 days



## Appalachian Community:

 Direct Exposure Mortality
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Appalachian Community: Mortality Caused by Wood Frogs


- Amplification : Spotted salamander (twice as high)
- Outbreak : Chorus frogs
- Transmission: Both species

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Appalachian Community: Mortality Caused by Chorus Frogs


## Appalachian Community:

Community influenced pathogen transmission

- Wood frog tadpoles caused an outbreak in chorus frogs and amplified mortality in spotted salamander larvae


Upland chorus frog tadpoles caused an outbreak in wood frog tadpoles

Spotted salamander larvae
transmitted the pathogen but it was
insufficient to cause an outbreak

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Cases of FV3-like Ranaviral Disease in Reptiles
(Westhouse et al. 1996; Marschang et al. 1999, 2005; Hyatt et al. 2002; DeVoe et al. 2004;
Huang et al. 2009; Allender et al. 2006, 2011; Johnson et al. 2007, 2008, 2011)


Gopherus polyphemus, Testudo hermanni, Terrapene carolina carolina, Trionyx sinensis, Uroplatus fimbriatus, and Chondropython viridis 1000-bp region of MCP

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Ranaviruses can be Transmitted across Ectothermic Vertebrate Classes


Matthew J. Gray, Thomas B. Waltzek,
and Debra L. Miller
UT Center for Wildlife Health
UF Department of Environmental and Global Health
$\qquad$
$\qquad$

Can Interclass Transmission Occur?


Can an isolate from each class infect the other classes?

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Conclusions

- Interclass Transmission is possible
- Pallid isolate was more virulent than $=$ $\qquad$ box turtle or bullfrog
- 15-65\%
- 1-10 days
$\qquad$
(One Isolate) $\qquad$
- Turtle and bullfrog isolates resulted in infection in wood frogs and red-eared sliders, respectively
$\qquad$

$\qquad$
$\qquad$

Transmission of ranavirus between ectothermic vertebrate hosts


Roberto Brenes ${ }^{1 *}$, Matthew Gray ${ }^{1}$, Debra Miller ${ }^{1,2}$, Rebecca. P. Wilkes ${ }^{2}$, and Thomas. B. Waltzek ${ }^{3}$
$\qquad$

## Experiment

- Direct exposure
- Exposed to $10^{3} \mathrm{PFU} / \mathrm{mL}$
- 3 days
- 15.5 L containers divided by $2000-\mu \mathrm{m}$ plastic mesh
- Different species in each side of the container
- One side exposed

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Results

Turtles infected amphibians
Amphibians infected turtles
Fish infected amphibians
Amphibians did not infect
 fish


## Results

Not all species caused mortality

- Turtles caused mortality in amphibians
- Amphibians did not cause mortality in turtles
Fish caused mortality in amphibians
Amphibians did not
cause mortality in fish



## Turtle and Fish Results

- All classes tested can transmit the virus
- Turtles infected tadpoles
- $50 \%$ mortality
- Fish infected tadpoles
- 10\% mortality

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Ranavirus Ecology


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

\section*{Factors Contributing to Emergence <br> Anthropogenic Stressors: Forson \& Sorfer (2020): Gray eat. (2000): Greer et <br> | A. tigrinum1) Herbicide (Atrazine) <br> Insecticide (Carbaryl) | $\{$ ATV Susceptibility $\uparrow$ |
| :--- | :--- |
| 2) Cattle Land Use: $\quad$ Prevalence |  |$\Rightarrow$| Green Frogs and Tiger |
| :--- |
| Salamanders |}

Other Possible Stressors: Pesticide Mixtures, Nitrogenous Waste, Endocrine Disruptors, Acidification, Global Warming, Heavy Metals
Pathogen Pollution: (Cunningham et al. 2003)
Anthropogenic introduction of novel strains to naïve populations
$\bullet$ Fishing Bait
-Ranaculture Facilities
-Biological Supply Companies
International Food \& Pet Trade
-Contaminated Fomites Schloegel et al. (2009)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Risk of Pathogen Pollution


World Organization for Animal Health


Are Ranaviruses Capable of
Contributing to Species Declines?


Matthew J. Gray
University of Tennessee
Center for Wildlife Health
Department of Forestry, Wildlife and Fisheries

$\qquad$
$\qquad$
$\qquad$


Signs Vary Among Species

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Internal Signs of Ranaviral Disease
Kidney Hemorrhages
Pale and Swollen Liver


It attacks quickly killing hosts as quickly as 3 days!


## Are Ranaviruses

## Capable of Causing

Local Extirpations and Species Declines?

$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Evidence of Environmental Persistence

(1) EHNV Persistence (Langdon 1989)

Ranaviruses can be remain viable outside the host for considerable duration (permanent wetlands at colder temperatures). - \#2 Met
(2) FV3, FV3-like (Nazir et al. 2012) $\qquad$

$$
\begin{array}{rll}
20 \mathrm{C} & =\cdot \text { •PW (unsterile): } 22-34 \mathrm{~d} & \text {-Soil: } 13-22 \mathrm{~d} \\
4 \mathrm{C}= & \cdot \text { PWW (unsterile): } 58-72 \mathrm{~d} & \text {-Soil: } 30-48 \mathrm{~d}
\end{array}
$$

$\qquad$
$\qquad$

## Evidence of Individual <br> Clustering and Transmission



## Evidence of Declines



Dr. Amber Teacher Southeastern England 1996/97 and 2008


Ranavirus (+)
populations
81\% Median
Reduction


## Evidence of Re-occuring Die-offs



Recruitment at most
wetlands failed due to ranavirus

Dr. Jim Petranka
Tulula Wetland Complex, NC


Uncommon
Species?


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Commonality of Being Uncommon <br> Southeastern United States <br> Federally Listed: Rana capito sevosa, Ambystoma cingulatum, Phaeognathus hubrichti, Ambystoma bishopi <br> Species of Concern: 113 Species and 25 Genera Total $50 \%$ U.S. <br> 1) Alabama $=14$ species ( 11 genera) <br> 2) Arkansas $=25$ species ( $\mathbf{1 2}$ genera) <br> 3) Florida $=19$ species ( 12 genera) <br> 4) Georgia $=22$ species ( 15 genera) <br> 

If uncommon species are highly susceptible, ranaviruses could have a significant impact on amphibian communities.
10) Tennessee $=26$ species ( 14 genera)

## Take Home Messages

Should we be Concerned?
-Ranavirus Die-offs have Global Distribution
-Ranavirus Prevalence can be High
-Ranaviruses Infect Multiple Amphibian Species with Different Susceptibilities
-Community Composition Matters
-Interclass Transmission is Possible - Abundant Reservoirs -Ranavirus Persistence is Long
-High Transmission: Breeding and for Schooling Spp.
-Anthropogenic Stressors and Pathogen Pollution
contribute to Ranavirus Emergence
Epidemiological Theory Supports the Premise that Ranaviruses Could Cause Local Population Extirpations and Contribute to Species Declines
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Take Home Messages |
| :---: |
| Should we be Concerned? |
| •Ranavirus Die-offs have Global Distribution |
| •Ranavirus Prevalence can be High |
| •Ranaviruses Infect Multiple Amphibian Species with |
| Different Susceptibilities |
| •Community Composition Matters |
| Interclass Transmission is Possible - Abundant Reservoirs |
| •Ranavirus Persistence is Long |
| •High Transmission: Breeding and for Schooling Spp. |
| •Anthropogenic Stressors and Pathogen Pollution |
| contribute to Ranavirus Emergence |

$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

