WFS 433/533 Amphibian Sampling Field Trip Breeding Site Sampling

Date:			Time:			Locatio	Location:					
Enclosure	Samples:											
Random A	Azimuth =			Random D	istance =							
Quadrant	Number of	Sp 1 =		Sp 2 =		Sp 3 =		Sp 4 =		Total		
	Dips	Abund	CPU	Abund	CPU	Abund	CPU	Abund	CPU	Abund	CPU	

- o Sample along a random azimuth that runs through the center of the site and at a random distance from shore that is accessible.
- o Sample enclosures until 10 dips have not yielded an animal; count number of dips.
- Put captured larvae in individual containers.
- o ID and count the animals at the end of sampling.
- o Record data and calculate CPU (number of captures/number of dips).

NOTES:

Dip net Samples:

Quadrant	Number of	Sp 1 =		Sp 2 =		Sp 3 =		Sp 4 =		Total	
	Dips	Abund	CPU	Abund	CPU	Abund	CPU	Abund	CPU	Abund	CPU

- o Sample in areas NOT sampled or inaccessible by enclosures (e.g., shallow areas with emergent vegetation, deeper sites that exceed trash can height). Random generation of sampling sites is not necessary.
- o Sample each quadrant for 10 minutes and keep count of number dips for calculation of CPU.
- o Sort through contents after each dip and put captured larvae into individual containers.
- o ID and count the animals at the end of each 10-min dip net period
- o Record data for each dip net sample period and calculate CPU (number of captures/number of dips).

NOTES:	
Egg Mass Counts:	(Indicate quadrant and count all egg masses in a 2-m belt transect that runs perpendicular
	to shore. ID eggs by genus.)

Other Instructions:

- o Release animals at approximate points of capture (i.e., do not dump all in one location).
- Euthanize (benzocaine hydrochloride) diseased animals (gross signs: edema, hemorrhaging) and put in microcentrifuge tube with 90% EtOH.
- o Collect 1 individual per species if unidentifiable.
- o Disinfect all equipment and boots after sampling; discard gloves.