Salamander movement in a patchy environment

Arik Kershenbaum

arik@nimbios.org

National Institute for Mathematical and Biological Synthesis

Outline

- What is a patchy environment?
- Fire salamander movement
 - Ephemeral pools as patches in an arid environment
- Mathematical models of movement strategies
- Genetic indications of salamander movement strategy

Patchy habitats

African Elephant distribution map

Patchy habitats

- Suitable "core" habitat surrounded by unsuitable "matrix"
- Can mean:
 - Severe barriers

How are patches isolated?

Severe barriers

Reduced fitness in matrix

So why disperse through a matrix?

Patchy habitats Vital resource in core Density-dependent dispersal from natal site Only those arriving at another patch will survive Life cycle constraint

Juvenile

Patchy habitats

- Suitable "core" habitat surrounded by unsuitable "matrix"
- Can mean:
 - Severe barriers
 - Probability of dispersal is low
 - Reduced fitness in matrix
 - Differential mortality
 - Vital resource in core
 - No choice but to seek them out
 - Life cycle constraint
 - Fitness maps may differ by life cycle stage

What affects the final distribution?

- Differential mortality in matrix
- Behavioural preferences for environment
- Life cycle constraints

Amphibians

- · Differential mortality
 - Physiological requirement for moisture
- Behavioural preferences
 - Cognitive orientation abilities
- Life cycle constraints
 - Aquatic breeding

Hypotheses

- Differential mortality
 - Physiological requirement for moisture
 - Will stay close to aquatic environments
- Behavioural preferences
 - Cognitive orientation abilities
 - Will avoid arid environments
- Life cycle constraints
 - Aquatic breeding
 - Will head for aquatic environments

Fire salamander

• Salamandra infraimmaculata

Fire salamander distribution					
bine than the property of the	Tours Tours Sand				
S. salamandra	TOTAL				

Life history

- Active in the wet winter, aestivates in dry summer
- Females deposit live larvae in pools
 - Mate after larvaposition
 - Gestate until the following winter

Constraints of an arid environment

- Few pools are year-round
 - Strong competition
 - Support large predators (fish)
- Ephemeral ponds are commonly used

Constraints of an arid environment

- Larvaposit in ephemeral ponds early in season
 - Risk of desiccation
- Larvaposit late in season
 - Risk of cannibalism

-	ς	

Movement

- Sounds like activity should be concentrated around pools
 - Males want to mate with females immediately after larvaposition
 - Fitter males might be expected to compete for positions near high quality pools

Testing this hypothesis

How to study individual movement

- Record animals on multiple visits
- Record GPS position
- Identify individuals using spot patterns

Pools as the main "meeting place"?

• Those spotted close to the pool, often remained close to the pool, but...

Alternative activity centres

- Those never seen near a pool, remained near non-pool activity centres
- 35% of individuals never found within 100 m of a pool

Movement range

- Maximum range observed: 764 m
- Maximum daily movement: 690 m

Implications

- Activity is not restricted to pools
 - Salamanders have a night-life outside of the bar
 - Males can find females away from contested breeding pools
- "Matrix" environment appears important for conservation, as well as "core" environment
- Post-larvaposition movement of females (foraging?) may drive male movement

Implications

- Dispersal range is probably underestimated
 - S. salamandra:
 - 48 m (Joly 1968, cited in Wells 2007)
 - 30 m (Rebelo and Leclair 2003)
 - 503 m over a whole season (Schulte et al. 2007)
 - 1200 m over multiple seasons (Bar-David et al. 2007)
 - 690 m in a single day
 - Ambystoma maculatum:
 - 175 m (Madison 1997)
 - 38 m (Rittenhouse and Semlitsch 2006)

Movement strategies

What kind of patch connectivity would you prefer?

• Answer: it depends

Movement strategies

- Having decided
 - Whether to disperse
 - Where to go
- Need to decide
 - How to get there
 - Movement strategies

Simplest strategy: random walk

- Different kinds of random walk
 - Correlation in direction
 - Correlation with environment

Random walk

Habitat preference

Habitat constraint

Non-random walks

- Wandering
 - Random walk
- Migration
 - Least cost

• Flow

Directed migrator

Random wanderer

Directed diffusor

Effect of multiple paths

• What's the quickest way to cross the valley?

Clue: not the least energetic way

Effect of multiple paths

- Directed migrator (least cost)
 - No effect
 - Least cost path remains least cost path
- Random walker
 - Increases time
 - Will "get lost" and wander around in low cost environment
- Directed diffuser (flow)
 - Reduces time
 - Whichever path animals choose, it will be a good one

So which model fits?

- Genetic data can indicate population flow
- Isolation by distance
 - The further apart populations are, the more genetically different they will be
- Isolation by resistance
 - The harder it is to get from one population to another, the more genetically different they will be
 - What is "resistance"?
 - Landscape features
 - Which features?

An example of the fire salamander

Does distance predict dispersal?

- Distance is not a good predictor of genetic difference
- Some pairs of sites are genetically closer than would be expected
- Removing those sites gives good fit of distance to genetic difference

Which sites cause the problem?

Modelling possible gene flow

- Assuming that animal movement is constrained by
 - Slope (energetic considerations)
 - Elevation (habitat suitability)

Conclusions?

- Anomalous genetic distances could be due to
 - Artificial introductions
 - Non-homogenous matrix resistance
- Non-homogenous resistance likely exists
- But is it indicated by genetic distances?
- Correct identification of matrix barriers/corridors can give
 - Conservation strategies
 - Understanding of the animal's movement ecology

Summary

- What are patches
 - Matrix properties
 - Mechanisms of dispersal and constraints
- Fire salamander as an example of amphibian dispersal
 - Large ranges
 - Matrix used as non-breeding environment
- Movement strategies
 - Random walk
 - Least cost
 - Flow
- Genetic tests of movement strategy
 - Matching observed genetics to landscape features
 - Conservation implications
