

#### Today

- Part I Introduction to Immunology
- Part II Innate Immunity
- Part III Acquired Immunity
- Part IV Xenopus Specific Immunology

#### To Survive we need:

- Blood flow
- Oxygen
- Nutrients
- An immune system



#### Why Do We Need an Immune System?

- We are constantly challenged with:
  - Viruses
  - Bacteria
  - Fungi
  - Parasites
  - Toxins
  - Malignantly transformed cells



Consequence of Impaired Immunity

- Animals that do not have functional immune systems
- Athymic (nude) mice
- Cats with advanced feline immunodeficiency virus (FIV)
- Humans with HIV
- Animals on high doses of immunosuppressive therapy
- May not survive a strong challenge from pathogenic organisms



Amphibian Decline



# Immunity is Provided by a Complex Network of Overlapping Systems



- Cytokines
- Chemokines
- Complement factors
- Antigen presenting cells
- Leukocytes
- Toll like receptors
- Antibodies

#### Which Animals Have Immune Systems?

 All vertebrate animals have some form of immune system



#### Immune System Organization

 The immune system is actually a combination of branches that work together



#### Innate Immunity vs Specific Immunity

- Innate immunity
  - Does not discriminate between different organisms or between self and non-self
  - Limited effectiveness but important first line of defense
- Adative (specific) immunity
  - Very effective against established infections
  - Relatively slow to respond
  - Immunological memory

#### **INNATE IMMUNITY**

#### Components of the Innate Immune system

- Mononuclear cells
  - Monocytes- bloodMacrophages- tissues
- Natural Killer (NK) cells
- Granulocytic cells
- Neutrophils
- Eosinophils
- Basophils
- Mast cells
- Dendritic cells Complement
- · Toll like receptors
- Antimicrobial peptides



#### **Innate Immunity: Terminology**

- Antimicrobial and serum proteins
- -potent, broad spectrum antibiotics
- -enhance immunity
- Pattern Recognition Receptors (Toll like receptors)
- -primitive part of the immune system
- -found on host cell surface
- -recognize pathogen-associated molecular patterns
- Pathogen-associated Molecular Patterns (PAMPs)
- -molecules associated with groups of pathogens
- -activate immune responses

#### Frogs have 20 TLRs! TLR2.2 TLR3 TLR5 TLR6.1 TLR6.2 TLR7 TLR8.1 TLR8.2 TLR9 TLR12 TLR13 TLR14.1 TLR14.2 TLR14.3 TLR14.4 <del>-1 1 0 €</del> -11-11-11-01-e> putative TLR4

| TLR | induce expression of IL-6, Interferor and GM-CSF in macrophages |
|-----|-----------------------------------------------------------------|
|     | T T L                                                           |



#### **Innate Immunity: Terminology**

- Antigen: Binds to an immunoglobulin or T cell receptor
- Immunogen: Induces an immune response to something foreign or toxic to the cell or body

#### **Requirements for Immunogenicity**

- Foreignness a rabbit immunized with its own serum albumin should not produce antibody
- High Molecular Weight -- These are general categories and that there are some exceptions. How could you make a small "nonimmunogenic" molecule "immunogenic"?
- Chemical Complexity --

# Granulocytic Cells Polymorphonuclear Leukocytes

- Basophils
- · Eosinophils
- Neutrophils
- Act rapidly but are not capable of sustained effort



19

#### Neutrophils

- Most abundant leukocyte
- Mediate acute inflammatory response to bacterial infection
- Ingest foreign particles and destroy with a respiratory burst



20

#### **Innate Immunity: Terminology**

### Monocytes/ Macrophages: "Big-eater"

- role is to phagocytose
- · stimulate lymphocytes
- attack foreign substances, infectious microbes, and cancer cells



#### **Innate Immunity: Terminology**

#### **Dendritic Cells:**

Process antigen and present it to cell surface of T cells of the immune system

-Messengers between innate and adaptive



#### **Natural Killer Cells**

- · Lymphocytes
- Contain granules filled with potent chemicals
- Do not need to recognize a specific antigen
- Target tumor cells and infectious organisms
   ADCC= antibody dependent cell cytotoxicity





#### **Barriers**

- Anatomic barriers
  - Skin
  - Mucous membranes
- Physiologic barriers
  - TemperatureLow pH

  - Chemicals
  - Tears



Schematic diagram of immune defenses against Batrachochytrium dendrobatidis in the skin. Mucus: Antimicrobial peptides, lysozyme, antibodies, and bacterial products

# Barriers Can be Breached







#### **Adaptive Immunity**

- Only cells of the acquired branch of the immune system can be educated
- · Antigenic specificity
- Immunological memory
- Self/ non-self recognition



31

#### Leukocyte

 Definition- a colorless cell that circulates in the blood and body fluids and is involved in counteracting foreign substances and disease; a white (blood) cell.





#### Basis for Immunological Memory



#### **Adaptive Immunity: Terminology**

#### Lymphocytes

- T cells (mature in Thymus)
  - -CD4 helper T cells
    - -Th1, promote macrophage activation and cytotoxic T cell proliferation
    - -Th2, evoke strong antibody response
  - -CD8 cytotoxic T cells kills infected/dysfunctional cells
- B cells (produced in the bone marrow)

# Lymphocytes

#### CD

 CD stands for cluster of differentiation, which indicates a defined subset of cellular surface receptors (epitopes) that identify cell type and stage of differentiation, and which are recognized by antibodies.

# Monoclonal Antibodies Mouse challenged with artigen Myeloma Cells Fusion Hybridomy Culture in HAT Medium Select for positive cells Antibodies



# Major Histocompatibility Complex (MHC) Proteins

- MHC I- Expressed on all nucleated cells, present antigen to CTL
- MHC II- Expressed on antigen presenting cells, present antigen to helper T cells



#### **B** Cells

- The only antibody producing cells
- Also function as antigen presenting cells
- B cell receptor is membrane bound immunoglobulin



antigen biological activity (c) C C







#### **Antibody Protective Mechanisms**



#### Opsonization

- Opsonins include IgG and complement
   C3
- Opsonins improve phagocytosis efficiency
- Opsonins are produced by innate and specific systems



#### T Helper Cells

• T cells are the gatekeepers of the immune response



# T helper cells are subdivided into Th1 and Th2 cells based upon their cytokine profiles Operation and their cytokine profiles Follower with North will be a subdivine and for practice action. Follower of the induction and for practice action.

# The Roles of T helper Cells • Th1 - Help IgG2a production - Activate macrophages - Delayed type hypersensitivity - Cytotoxic T cell activation - Cytotox

### 







#### Amphibian Immunity



| Summary of the 3 Devel sings (days) |                                                                             | al Steps of the Xenopu.  Thyran  Thenic collection but.                               | s Immune System Spices                                           | GALT<br>Few scattered CDAs                                             |
|-------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|
|                                     |                                                                             | from 2nd viscend<br>pough                                                             |                                                                  | Expressing<br>lookocytes                                               |
| 46 (64)                             | Lymphopolesis in<br>peripheral layer, Ig<br>(a)and sterile<br>TCRB RAG, AID | Epithelium, no<br>procursors                                                          | Spleen unlage<br>measurabymal thickuring<br>in the mesognatism   | No B cells                                                             |
| 47 (64-5)                           | Lymphopolesis, and<br>B cell development<br>in absence of Ag                | Colonization by<br>Lymphopoietic<br>procuraces from post-<br>VBI (~100 wilk)<br>BC47* | Blood cells (No<br>Lymphopeinis)                                 |                                                                        |
| 48 (46-7)                           |                                                                             | Cortex-meddals, full<br>TCRB mRNA, CD3s<br>CD8* Thym., class<br>II* ophhelial cells   |                                                                  |                                                                        |
| 49 (410-13)                         | lgl. rearrangements                                                         | First CTX' thymocyte,<br>most CD8*                                                    | Spleen B cells (~200) and<br>1 <sup>rd</sup> detect Ab responses |                                                                        |
| 50 (815)                            |                                                                             | Ongoing thymocyte<br>differentiation (3+32 <sup>4</sup><br>solls)                     |                                                                  |                                                                        |
| 56 (438)                            |                                                                             | Organiz thyrocyte<br>differentiation (8x10 <sup>2</sup><br>solls)                     | Detectable T cell responses                                      |                                                                        |
| 58 (644)                            |                                                                             | Man, size of the thyrms<br>(1-2xi0 <sup>6</sup> cells)                                | Max, larval T cell response<br>(1 x 10° cells)                   |                                                                        |
| Adult (+dell)                       | Adult-type leukocytes                                                       | Thyrms more near<br>tyropasses New<br>adult-type thymocyte<br>citieseniasion          | Adult T cell responses<br>(1-2 x 10° cells)                      |                                                                        |
| Adult (> 1 yr)                      |                                                                             | The case progressively filled by fat tissues                                          | $(1-2\times10^7$ with)                                           | Many lgM* and lgX*<br>B cclb, so well so<br>T calls (CDB* and<br>CD8-) |



#### **Larval Immunology**

- Competent Innate Immune System
- Weak Adaptive Immune System
  - -Small amount of T cells and B cells in larvae
  - -NK cells only right before metamorphosis

### What is going on during Metamorphosis?

- Tadpoles are free-living so must be protected against potential pathogens
- During metamorphosis, they acquire adult specific molecules
- Must show tolerance to new self molecules
- T cell function becomes impaired
- Express different antibody repertoire
- Lessening of skin graft tolerance
- The appearance of MHC class I antigens
- Persistence of immunological memory

#### **Adult Immunology**

- Immune system becomes complete 2-3 weeks after metamorphosis
- Strong Innate and adaptive immune responses
  - -Antimicrobial peptides
  - -NK cells
  - -Complement
- Adaptive Immune system similar to other mammals
  - -Except B cells differentiate mostly in the liver and spleen (instead of bone marrow)



#### **Temperature and Immune Status**

- Helminth clearance is slower at 15°C that 25°C
- Skin grafts are rejected faster at 27°C than at 21°C
- These and other data suggest selective inhibitory effect of low temperature on Tcell function

## Other modulators of immune response

- Temperature
- UV
- pH
- Predators
- Man-made modulators
- Psychosocial factors
- Xenobiotics

# Increases in Susceptibility not simply due to poor immunity

- Exposure to new, highly virulent pathogens
- New pathogens are immunosuppressive
- Pathogen "bloom"
- Stress response
- Environmental contaminants

## Immunology tests that can be performed without species specific reagents

- · Serum virus neutralization
- Serum protein electrophoresis
- Competitive ELISA (maybe)
- Hemagglutination inhibition
- Lymphocyte proliferation
- Apoptosis
- Cytotoxic T cell killing assays

| _ |  |  |  |  |
|---|--|--|--|--|
| _ |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| _ |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
| _ |  |  |  |  |
| _ |  |  |  |  |
| _ |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
| - |  |  |  |  |
|   |  |  |  |  |