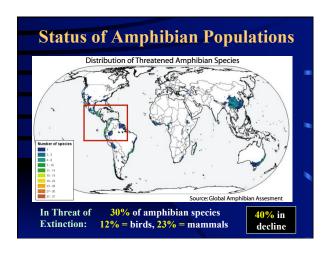
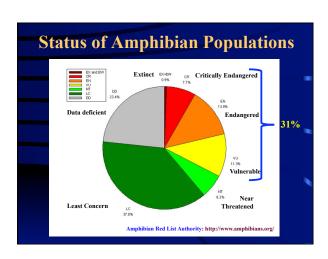
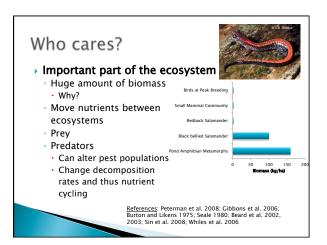

Outline I. Amphibian Declines II. Why Amphibians? III. Hypotheses for Declines IV. Should we Care? Required Readings: Wells (2007): pp. 787-795, 800-803, 850-853


Supplemental Readings: Wells (2007): pp. 816-853

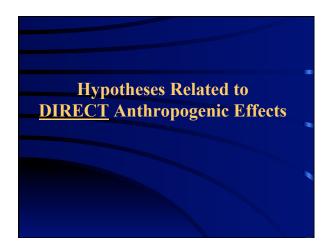

History of Amphibian Declines Prior 1970s: •Few extinctions; some localized die-offs Ohio Journal of Science 49:70-71 1970-mid-1980s: •Few extinctions •Localized die-offs in temperate areas associated with habitat destruction Alberta Naturalist 11:1-4 Late 80s-Now: 1989 First Meeting of the World Congress of Herpetology Conservation Biology 7:355-362, 8:72-85, 10:406-413, 10:414-425, 12:106-117, 13:117-125; Biotropica 20:230-235; Nature 404:752-755


IS (f A	۸m	ph	ibi	an	Po	pul	atio	ons
Total	EX	EW	CR	EN	VU	NT	LC	DD	% Threaten ed or Extinct
5,640	34	2	429	665	561	327	2,178	1,446	29.3
557	2	0	79	101	92	62	161	60	48.8
177	0	0	1	1	4	0	53	118	3.4
5,918	36	1	456	769	671	369	2,236	1,382	30.3
CR, EN, or VU: Anura = 1655 spp Caudata = 272 spp Gymnophiona = 6 spp									
	Total 5,640 557 177 5,918	Total EX 5,640 34 557 2 177 0 5,918 36	Total EX EW 5,640 34 2 557 2 0 177 0 0 5,918 36 1	Total EX EW CR 5,640 34 2 429 557 2 0 79 177 0 0 1 5,918 36 1 456 CR, EN, or VU: An	Total EX EW CR EN 5,640 34 2 429 665 557 2 0 79 101 177 0 0 1 1 5,918 36 1 456 769 CR, EN, or VU: Anura = Caudata	Total EX EW CR EN VU 5,640 34 2 429 665 561 557 2 0 79 101 92 177 0 0 1 1 4 5,918 36 1 456 769 671 CR, EN, or VU: Anura = 165: Caudata = 27	Total EX EW CR EN VU NT 5,640 34 2 429 665 561 327 557 2 0 79 101 92 62 177 0 0 1 1 4 0 5,918 36 1 456 769 671 369 CR, EN, or VU: Anura = 1655 spp Caudata = 272 spp	Total EX EW CR EN VU NT LC 5,640 34 2 429 665 561 327 2,178 557 2 0 79 101 92 62 161 177 0 0 1 1 4 0 53 5,918 36 1 456 769 671 369 2,236 CR, EN, or VU: Anura = 1655 spp Caudata = 272 spp	Total EX EW CR EN VU NT LC DD 5,640 34 2 429 665 561 327 2,178 1,446 557 2 0 79 101 92 62 161 60 177 0 0 1 1 4 0 53 118 5,918 36 1 456 769 671 369 2,236 1,382 CR, EN, or VU: Anura = 1655 spp Caudata = 272 spp

Status of U.S. Amphibians	
•2 Species Extinct (R. fisheri; P. ainsworthi)	
•10 Endangered; 9 Threatened; 5 Awaiting	
•CA = 8 Spp.; SW = 6 Spp.; SE = 6 Spp. (Chiracahua Leopard Frog, 80%)	U.S.
•TN: 1 state-listed; 26 spp (30%)	

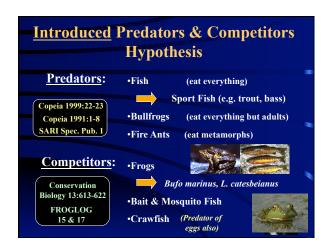
Species Designated Extinct 2 Salamanders Plethodon ainsworthi- South central Mississippi Cynops wolterstorffi- (Newt) Yunnan, China 34 Anurans 2 Extinct in the wild- Wyoming toad [7 zoos around the USA], Kinhasi spray toad (Tanzania) [Toledo Zoo] 20 spp. of Rhacophorids-1 just rediscovered in Sri Lanka after 160 years of no detection (March 5, 2013) 4 spp. Bufonids, 3 Myobatrachids, 2 Craugastorids, and 1 Hylid, Ranid, and Dicroglossid 54 species haven't been seen in 5 – 40 yrs, mostly in Latin America

Who cares? -cont.

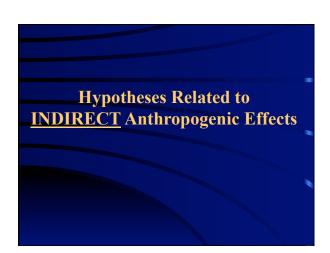


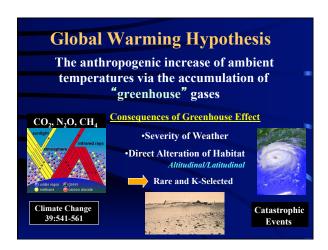
Medicine

- Skin secretions and toxins- major potential for the development of pharmaceuticals
- Trials in rats show some of them have applications for weight loss, blood pressure regulation, cancer fighting, anti-microbial, anti-fungal, congestive heart failure, drug addiction, pain


Touted as ecological indicators

- May help assess environmental quality
- Presence of contaminants




Chemical Pollution Hypothesis Point Source: Pollution originating from 1 point. *Effluent: organic or industrial waste *Thermal: electric plants Non-point Source: Pollution originating from multiple points (e.g., field, parking lot). Chemicals & Effects: Relyea (2003, 2004, 2005, 2009) *Nitrates & Ammonia: Direct mortality: Reduce growth *Organophosphate Insecticides: Above plus malformations and altered behavior *Atrazine: herbicide (T. Hayes) *Various Oils & Compounds: Affect respiration Interactive effects with Natural Stressors

