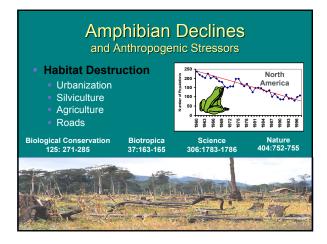


Amphibian Decline


- Climate changes
 - Global warming
 - UV-B rays
- Invasive species
 Competition / Predation
 - Ie. Rana catesbeiana in the west
- Water contaminates

XX P

Influences of Cattle on Amphibians

Previous research

Healey et al. 1997, Jansen and Healey 2002 -Australia Correlate amphibian abundance with wetland characteristics Suggest cattle indirectly negatively affect amphibians

Bull et al. 2001, Bull and Hayes 2000 -Oregon

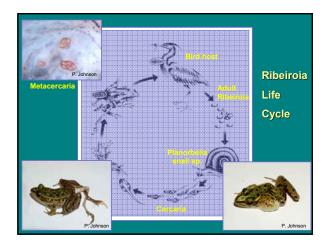
Compare abundance of Columbia Spotted frogs in grazed and ungrazed areas

Found no differences in abundance between treatments

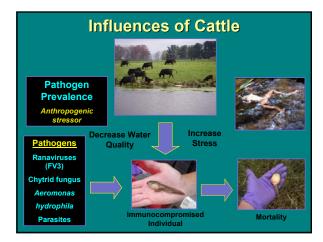
Knutson et al 2004- Minnesota

Evaluate agricultural wetlands for value as amphibian habitat

Species richness and abundance of some species lower at grazed wetlands


Influences of Cattle on Amphibians

- Grazing vegetation
 - Vegetation Structure
 - Detritus
- Trampling egg masses
- Affects demographics at later life stages
- Soil Compaction
- Water Quality



Influences of Cattle Decrease in Water Quality		
Defecation 💻	Nutrients	Eutrophication
	•Increases in ammonia, nitrite, nitrate and phosphate	-Decrease in Dissolved Oxygen
Planorbid snail	Decrease in growth and survivorship	•Change in algal community •Change in invertebrate composition

Amphibians and Cattle in Tennessee

Most studies occur out west and along streams (Belsky et al. 1999, Line 2002 Jansen and Healey 2003)

- 40% of land area farmland
- 57% = cattle production
- 48,000 cattle operations
- 9th in nation in beef cattle use
- Value of cattle \$1.67 bill
- NASS and USDA

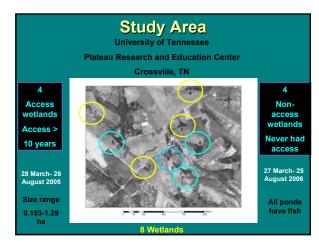
 Amphibian richness highest in the southeast
 44 anurans

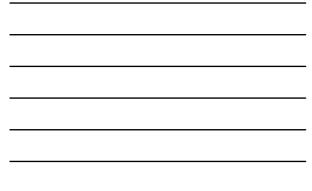
 84 caudates Baile
 In Tennessee

21 anurans
45 caudates

nd and Scott 1

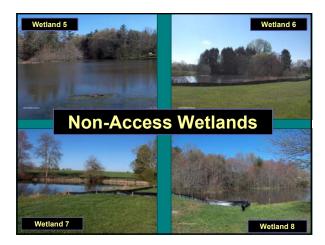
 Justification

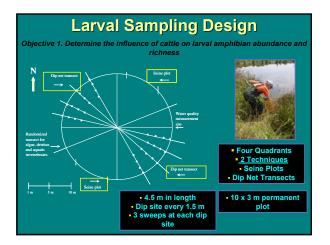

 • It has been reported that cattle negatively affect mergent vegetation and water quality and thus could potentially affect resident amphibians.

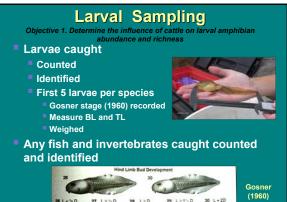

 • Cattle could potentially increase pathogen occurrence.

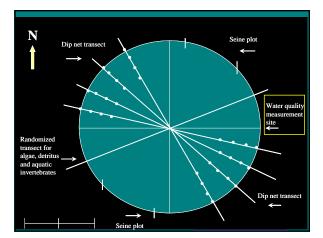
 • The effect of cattle on adults has rarely been quantified.

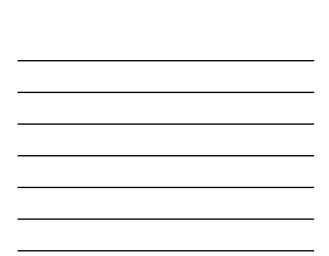
 • There are no replicated studies for larval amphibians.

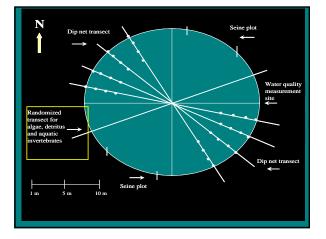

 • No studies documented in the Southeast, specifically Tennessee.

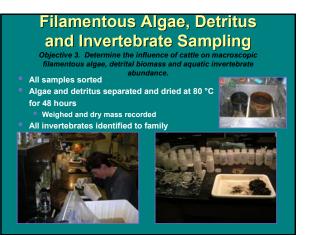












Pathogen Sampling

Objective 4. Determine the influence of cattle on the presence pathogens (viruses, bacteria and parasites) in larval communit

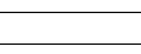
- Pathogens measured
 - Winter-February 15th 2005
 Summer-June 15th 2005
 - Summer-June 15th 2008
 Fall-October 12th 2005

2 species

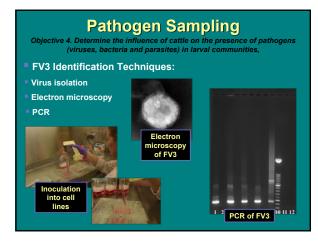
- Bullfrog (Rana catesbiana)
 Green frog (Rana clamitans)
- Larvae collected opportunistically
 5 individuals per species per wetland

Pathogen Processing Methods

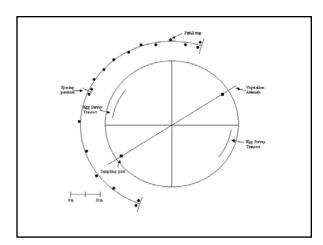
Objective 4. Determine the influence of cattle on the presence of pathogens (viruses, bacteria and parasites) in larval communities,

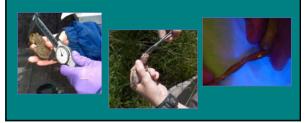

Transported back to UT

Benzocaine hydrochloride



 Fixed and fresh tissues
 UGA Veterinary Diagnostic and Investigational Laboratory





Processing Captured Individuals

- Measure (SVL)
- Weigh

Tag-VIA tags®
Mark-Toe clipping

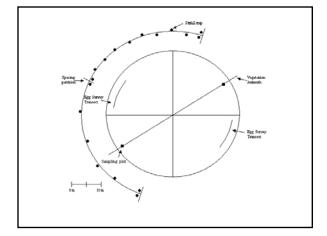
Methods

Breeding Call Surveys

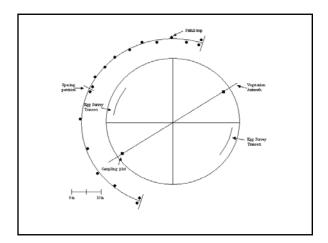
Objective 1. Determine the influence of cattle on species richness and relative abundance of postmetamorphic amphibians Surveys followed North American Amphibian Monitoring Program (NAAMP) protocol = 2 survey durations = 5 minutes (0-5:00) = 10 minutes (0-10:00)

- 2 Permanent listening stations

- Began ≥30 minute after sunset
- Upon arrival waited 1 minute
- Species occurrence and ranked abundance

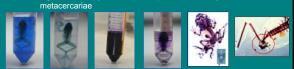

Methods

- Ranking species-specific abundance
 - 1= individuals <u>can be distinguished</u> and calls <u>do not overlap</u>



- 2 = individuals <u>can be distinguished</u> and calls do overlap
- 3 = <u>full chorus</u> (individuals cannot be distinguished and calls do overlap)

Methods Sampling Techniques


- Pathogen prevalence
 - 5 metaporphs Rana clamatins collected from each wetland on June 15, 2005
 - Individuals euthanized via transdermal exposure to benzocaine bydrocloride
 - Comprehensive histological and parasitological analysis of tissue samples performed at the Tifton Veterinary Diagnostic and Investigational Lab

Methods Sampling Techniques

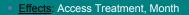
- Objective 4. Determine the influence of cattle on pathogen and malformation prevalence in amphibians
 - Trematode prevalence
 - Malformed individuals opportunistically collected
 - Malformation classified using USGS Field Guide to Malformations of Frogs and Toads
 - Humanely euthanized via transdermal exposure to benzocaine hydrochloride
 - Fixed in 10% buffered formalin and Cleared
 - Light microscopy used to detect presence of encysted trematode
 matagarageica

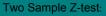
Statistical Analyses

Repeated Measures ANOVA: Amphibians

- <u>Response</u>: Relative Daily Abundance
- <u>Effects</u>: Access Treatment, Month
 Two-sample T-tests (Trt*Month_P<0.1)

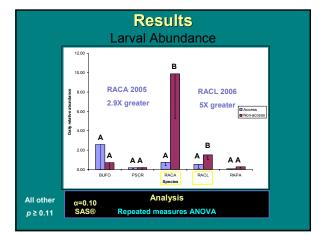
Repeated Measures ANOVA: Egg Mass

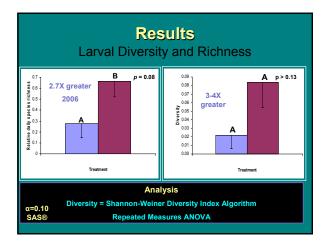

- <u>Response</u>: Mean Total Abundance
- <u>Effect</u>: Access Treatment, Month



Statistical Analyses

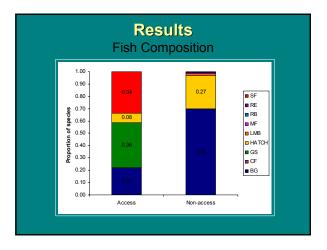
Repeated Measures ANOVA: Vegetation

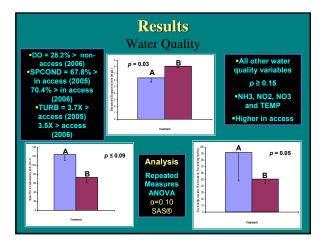

 Response: Mean Vegetation Structure
 Vegetation Variables: Percent Vertical & Horizontal Cover, Height

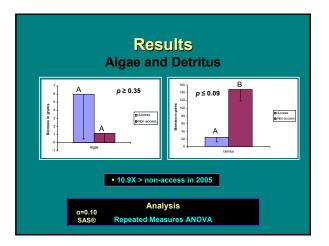


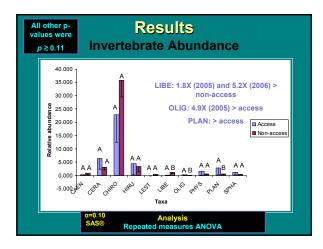
Pathogens and Malformations



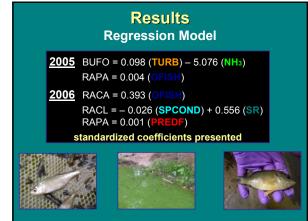


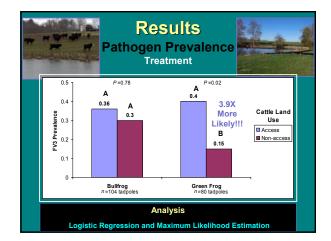


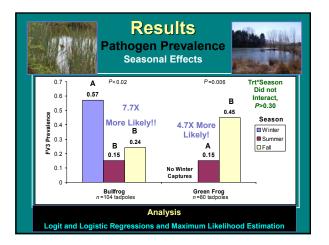


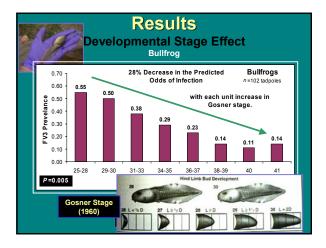


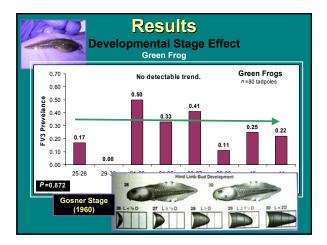












Summary of Results

- Larval Abundance, Richness and Diversity Bullfrog and green frog abundance was greater in non-access

 - Species richness was greater in non-access wetlands
 No significant difference in species diversity
- Water Quality
 - Specific conductivity and turbidity were higher and dissolved oxygen lower in cattle-access wetlands
 - No significant difference in other water quality variables
- Detritus and Algae
 - Detritus was greater in non-access wetlands No significant difference in algae biomass between treatments

Summary of Results

- Invertebrates
 Dragonfly larvae abundance was greater in non-access
 Aquatic worm abundance was greater in cattle-access
 Regression Model
 Specific conductivity explained 82% of variation in green frog larval
 abundance.
 - Other fish (non-predators) explained 73% of variation in bullfrog larval abundance.
- FV3
 - Green frog larvae were more likely to be infected with FV3 in cattle-access wetlands.
 - FV3 prevalence was higher in cooler months for both species. As development progressed FV3 prevalence decreased in American Bullfrog larvae.

Discussion

Larval Abundance

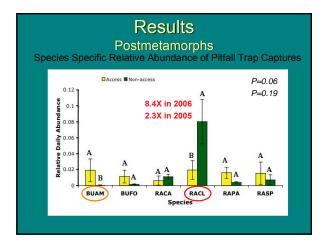
- It was documented that cattle access wetlands negatively impacted American bullfrog and green frog tadpole populations
 Water quality and fish abundance were important predictors of abundance
- It appears that American and Fowler's toad tadpoles were not negatively impacted by cattle access
- Higher resistance to water quality Jore and Karasov 1999
 Exploitation of habitat where there is lower abundance of ranids

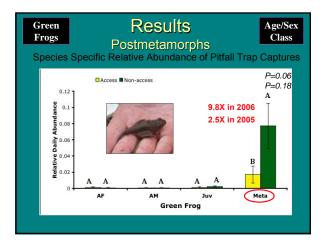
Discussion

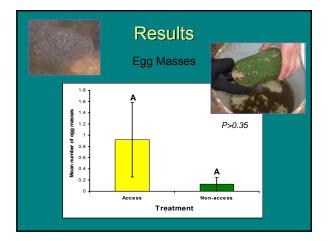
Detritus and Algae

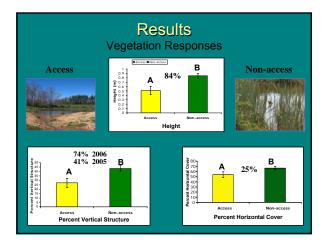
- Detritus > in non-access wetlands In-direct effects from lack of grazing pressure
 - Provided better habitat for ranids
- Algae trend toward being > in cattle-access wetlands Trend toward higher nutrients
- Invertebrates
 - LIBE somewhat tolerant
 - OLIG -tolerant to water pollution Voshell 2002
 - In General
- More snails in cattle-access Slight change in composition difference in abundance © More "sensitive" species in non-access wetlands

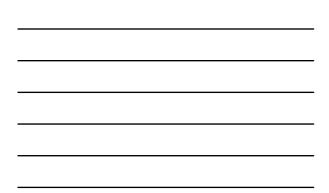
Discussion


- Pathogen Prevalence- Frog Virus 3 (FV3)
 - Water quality
 Effected green frog survival
 Potentially compromised immunity Jofre and Karasov 1999
 - Seasonal Effects
 - - Low temperatures increases pathogen prevalence
 Low temperatures cause a decrease in overall immune
 function
 Maniero and Carey 1997 Maniero and Carey 1997
 - Developmental Stage
 - Immunity could increase in bullfrogs Brunner et al., 2004 Susceptible tadpoles at earlier stages experienced









Results: Pathogens

•No differences in bacterial, viral or parasitic prevalence between treatments

35 malformed individuals 11 Malformation types 2% malformation rate Α *P*=0.14 Α 59° Aalflorr 41% Access Non-Acces Treatment

Summary of Results

- Green frog metamorphs are negatively affected by cattle presence
- Vegetation structure, horizontal cover and height are reduced in cattle access wetlands
- Egg mass abundance did not differ between treatments
- Prevalence of pathogens and malformations did not differ between treatments

Discussion

Vegetation Structure:

- Breeding sites Jansen & Healey (2003) Foraging and escape cover Healey et al. (1997)
- Egg deposition

Green Frog Metamorphs driving the trends

- Higher Abundance
- More sensitive to disturbance
 Heavily impacted by vegetative cover and water quality
- Toads- going against the trend
 - Reduced Competition / Out competing other species Better suited to areas with less vegetation
 - Desiccation, movement
 - Can withstand lower water quality than other species

Discussion		
Water Quality Specific Cattle Ammonia Turbidity Conductivity Access		
Reduced immunocompetence increased FV3 prevalence Tadpoles affect later demographic stages		
Modeling Postmetamorphic Amphibian Abundance Environmental Cofactors: vegetation, water quality, cattle density, tadpole abundance		
2006 RAOL = -0.002(Specific Conductivity) R ² _{adj} = 0.79 82% = Specific Conductivity		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
2006 BUAM= 0.0001(Turbidity) - 0.006(NHa) + 0.002(Temperature) R ² _{adj} = 0.99 90% = Turbidity		

Conservation Implications

- Cattle grazing may be contributing to amphibian declines
- Separation of cattle and amphibians
- Providing alternative food and water sources

Acknowledgements

Funding:

- UT Dept. of Forestry, Wildlife and Fisheries
 Tennessee Wildlife Resources Agency

Assistance:

- Walt Hitch
- PREC Staff
- Volunteers

