
# Influences of Agricultural Land Use on Southern High Plains Amphibians







## **Lecture Structure**

- I. Amphibian Abundance, Community Composition, and Source-Sink Dynamics
- II. Postmetamorphic Body Size
- III. Agricultural Landscape Structure

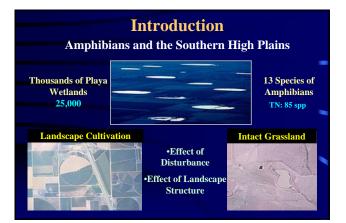
### Introduction

Anthropogenic Habitat Destruction and Landscape Disturbance

2 Primary Land Uses:



>10 U.S. Studies




Conservation Biology 8:60–71, Annual Review of Ecology and Systematics 30:113–165

## Introduction

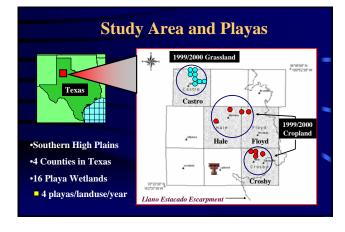
### **Agricultural Cultivation**

| (Con. Bio. 13:                                                                                      | 1437–1446, Can. J. Zool. 77:1288–1299)                                             |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Positive Associations/Elevated Abundance in Cropland                                                |                                                                                    |  |  |
| (Wildlife Socie                                                                                     | ety Bulletin 27:759–769)                                                           |  |  |
| •No Effect of Cultivation                                                                           |                                                                                    |  |  |
| Canadian & European Studies:                                                                        |                                                                                    |  |  |
| <ul> <li>Cultivation negatively affects abundance, richness, and fitness<br/>correlates.</li> </ul> |                                                                                    |  |  |
|                                                                                                     | (e.g., Ecology 77:2091–2097,                                                       |  |  |
| urveys<br>ling Season                                                                               | Con. Bio. 11:1000–1009,<br>Eco. Int. Bull 17:65–73,<br>J. Biogeography 25:763–772) |  |  |
|                                                                                                     | s/Elevated Ab<br>(Wildlife Socie<br>tion<br>dies:<br>ely affects abu<br>urveys     |  |  |

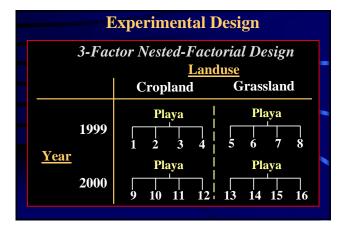


## Introduction

### **Research Objectives**


- 1) Influence of agricultural land use on amphibian community characteristics.
- 2) Influence of agricultural land use and year on postmetamorphic body size of amphibians.
- 3) Effect of landuse on chaotic dynamics of amphibians.
- 4) Effect of landuse on temporal niche partitioning of amphibians.
- 5) Determine if a relationship existed between agricultural landscape structure and amphibian community composition.

| 2 Landuses              | 2 Years     | 16 Playas       |
|-------------------------|-------------|-----------------|
| •Cultivation, Grassland | •1999, 2000 | •4/landuse/year |


## **Objective 1**

Effect of Landuse and Year on Population Demographics of Southern High Plains Amphibians











# **Methods: Terrestrial Capture**



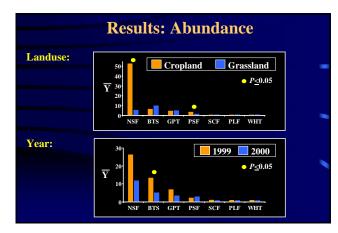

Checked Alternate Days
 16 May-17 October 1999
 19 April-18 August 2000



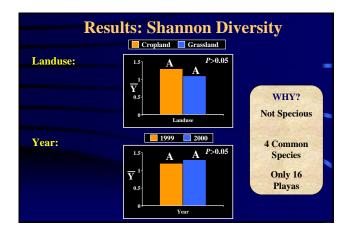
•Partially Enclosed (25%) •60-cm Drift Fence

# **Methods: Biological Processing**

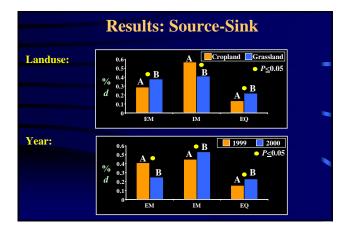





•5 individuals/ playa/species/ age class/day


n = 2816 cropland

| <b>Response Variables</b><br>2 Categories |                                                                                                       |                                                                                                                                                                       |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                                                       |                                                                                                                                                                       |
| ics: c                                    | ontinuous                                                                                             |                                                                                                                                                                       |
| Daily Abu                                 | undance                                                                                               | By Species                                                                                                                                                            |
| aily Specie                               | s Diversity                                                                                           | All Species                                                                                                                                                           |
| cs: c                                     | Categorical                                                                                           |                                                                                                                                                                       |
| Frequency of Days                         |                                                                                                       | All Species                                                                                                                                                           |
| gration                                   | Sink Dynamics                                                                                         | Am. Nat.                                                                                                                                                              |
| gration                                   | Source Dynamics                                                                                       | Am. Nat.<br>132:652–661                                                                                                                                               |
| gration 1                                 | Neutral Dynamics                                                                                      |                                                                                                                                                                       |
|                                           | 2 Categor<br>ics: <i>C</i><br>Daily Abu<br>nily Specie<br><b>cs:</b> <i>C</i><br>quency of<br>gration | 2 Categories<br>ics: Continuous<br>Daily Abundance<br>hily Species Diversity<br>cs: Categorical<br>quency of Days<br>gration Sink Dynamics<br>gration Source Dynamics |











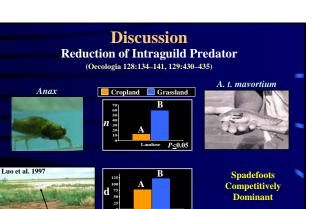







### **Disturbance Confined Individuals**

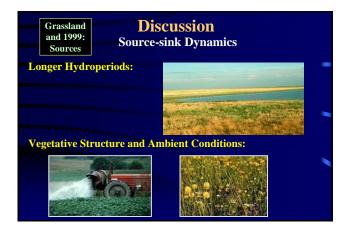
(Knutson et al. 1999, Kolozsvary and Swihart 1999)


#### Why Spadefoots?

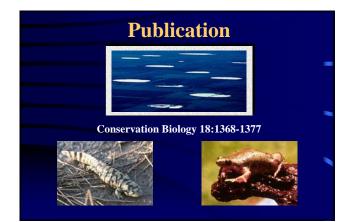


 Patch Viscosity •Boundary Permeability (Wiens 1997)





Species-Specific Vagility




P<0.05

Science 212:1284–1286 Ecology 68:1437–1452









# **Objective 2**

Effect of Land use and Year on Postmetamorphic Body Size of Southern High Plains Amphibians

### **Body Size Hypotheses**

#### Wilbur and Collins (1973): Science 182:1305-1314



Body size at metamorphosis will be a consequence of the larval environment and confer fitness to postmetamorphic adults.

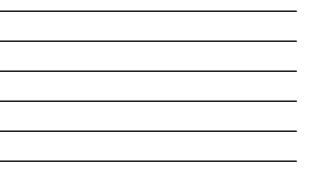
> Earl Werner (1986): American Naturalist 128:319-341

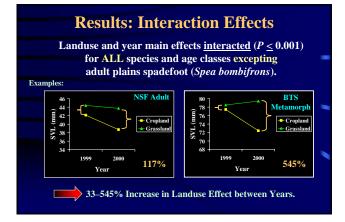
Postmetamorphic body size is a consequence of size-specific mortality and growth rates in both the larval and terrestrial environments.

"Catch-up" Growth

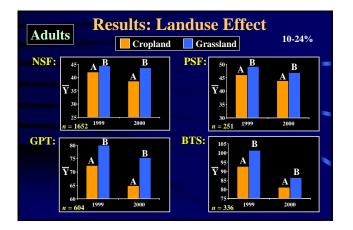
### **Effect of Landuse on Body Size?**

Few studies have explored the possible influences of agricultural land use on postmetamorphic body size of amphibians.

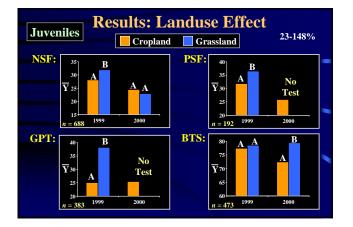


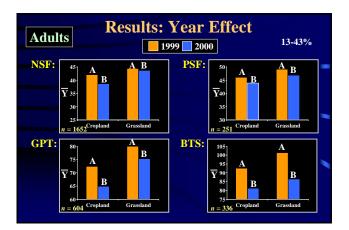

### **Research Objective**


Compare postmetamorphic body size between individuals captured in cultivated and grassland (control) landscapes during 2 years (1999 and 2000).

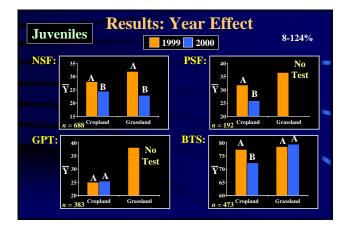










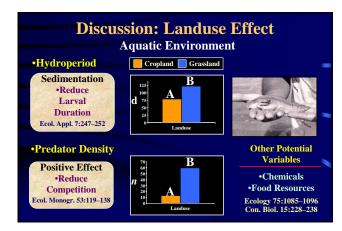


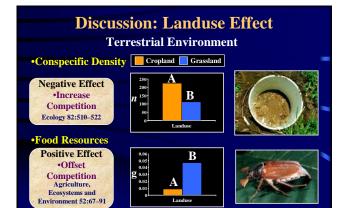


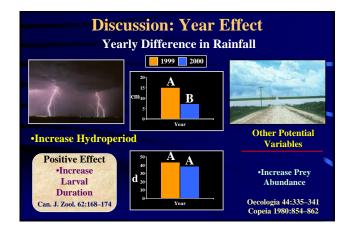








### **Summary of Results**


#### Landuse Effect: 10-148%


Postmetamorphic body size of individuals captured in grassland landscapes was <u>greater</u> than those captured in cropland landscapes generally for all age classes and species.

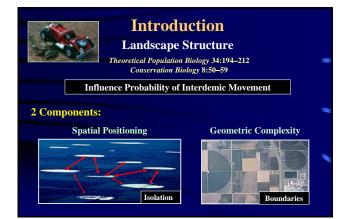
### Year Effect: 8-124%

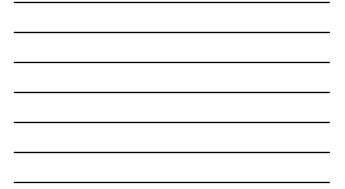
Postmetamorphic body size was <u>greater</u> in 1999 than in 2000 for most age classes and species.

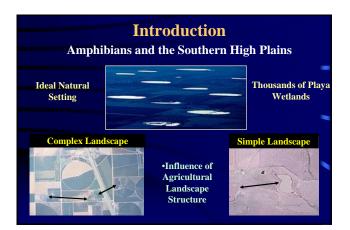




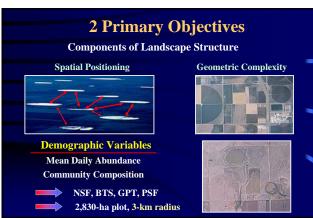


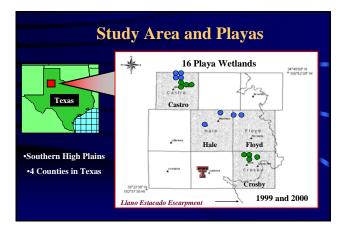

| <b>Conservation Implications</b><br>Advantages of Body Size in Amphibians |                                                                 |                           |  |
|---------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|--|
|                                                                           | •Age at 1 <sup>st</sup> Reproduction                            | •Foraging Efficiency      |  |
|                                                                           | •Mating Success                                                 | •P[Predator Escape]       |  |
|                                                                           | •Fecundity                                                      | •P[Surviving Dehydration] |  |
|                                                                           | P[Survival and Reproduction] = Fitness<br>Large > Small         |                           |  |
|                                                                           | P[Population Persister<br>Ecology 69:184–192, 71:1599–1608, 75: |                           |  |
| 7                                                                         | Cropland Playas P[Extinction]                                   | Drier<br>Years            |  |





# **Objective 5**

Influence of Landscape Structure on Community Composition and Relative Abundance of Amphibians







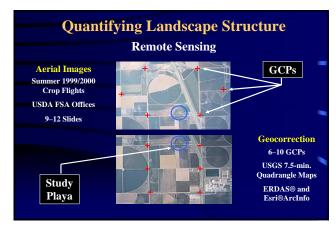









## **Methods: Terrestrial Capture**




•19-L Pitfall Traps •Checked Alternate Days

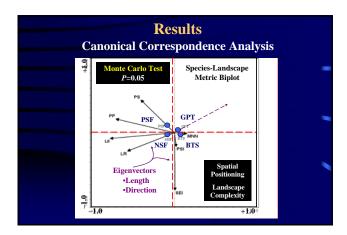
•16 May-17 October 1999 •19 April-18 August 2000 •Enumerated by Species *Mean Daily Capture* 



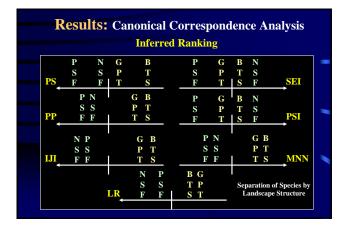
•Partially Enclosed (25%) •60-cm Drift Fence



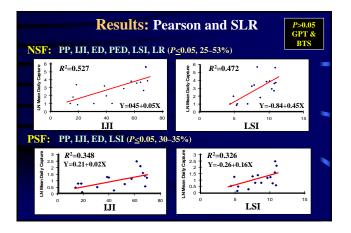



| Quantifying Landscape Structure |                         |                               |  |
|---------------------------------|-------------------------|-------------------------------|--|
|                                 | Remote Sensing          |                               |  |
| ERDAS® Imagine<br>Software      | Mosaicked Images        | Feathered Overlying<br>Pixels |  |
| Digitized<br>Polygon            |                         | Digitized<br>Polygon          |  |
| Digitized in ERDAS®             |                         | Exported to<br>Esri®ArcInfo   |  |
|                                 | Georeferenced Landscape |                               |  |






| Quantifying Landscape Structure<br>Spatial Analysis |                              |
|-----------------------------------------------------|------------------------------|
| FragStats*Arc 💻                                     | 13 Spatial Metrics           |
| Playa Positioning                                   | Geometric Complexity         |
| •Shape Index (PSI)                                  | •Playa Edge Density (PED)    |
| •Playa Size (PS)                                    | •Edge Density (ED, m/ha)     |
| •MNN Study Playa (PNN)                              | •Landscape Shape Index (LSI) |
| •MNN All Playas (MNN)                               | •Landuse Richness (LU)       |
| •Percent & Number of Playas                         | •Shannon Evenness (SEI)      |
| (PP, NP)                                            | •Shannon Diversity (SDI)     |
| •Interspersion/Juxtaposition<br>Index (IJI)         | McGarigal and Marks 1995     |










| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |





## **Summary of Results**

**Canonical Correspondence Analysis:** 

Landscape structure influenced the composition of the amphibian assemblage at playa wetlands.

GPT and BTS were negatively associated with spadefoots (NSF, PSF).

#### **Pearson and SLR:**

Spadefoots were positively associated with metrics representing optimal spatial positioning of playas and geometric complexity of the landscape.

GPT and BTS abundance was not influenced univariately by landscape structure.

### Discussion

**Spadefoots Influenced by Structure** (With and Crist 1995, Wiens et al. 1997, McIntyre 2000)

Small Body Size

'+' Correlated w/ Vagility
 Patch Viscosity
 Boundary Permeability



Geometrically Complex Landscapes Unable to Penetrate Increased Nestedness/Abundance (Can. J. Zool. 77:1288–1299) Optimally Juxtaposed Wetlands P[Dispersal] ↑ Metapopulation Theory (Am. Nat. 148:226-236)

### Discussion

GPT and BTS '-' Associated with Spadefoots (Ecol. Monogr. 53:119-138, Copeia 1999:515-520, Wildl. Soc Bull. 27:759-769)

Differential Competitive Ability

•Competitively Dominant Larvae •Postmetamorphic Diet Overlap









\_\_\_\_\_

|    | Conservation Implication                                                                   | ıs       |       |
|----|--------------------------------------------------------------------------------------------|----------|-------|
|    | Agricultural Landscape Structure can In<br>Species Composition and Abundance<br>Amphibians |          |       |
|    | •Isolated Wetlands                                                                         | P[extinc | tion] |
|    | •Geometrically Complex Landscapes                                                          | Confinem | ent?  |
|    | Species Dependent                                                                          |          |       |
| Mo | re Research: •Species-Specific Vagility                                                    |          |       |
|    | Dispersal Occurrences                                                                      |          |       |
|    | Ecologists should consider landscape structure when conservation endeavors for amphibians. | planning |       |

| Publication                  |   |
|------------------------------|---|
|                              | - |
| Landscape Ecology 19:719-729 |   |
|                              |   |

# **Conservation Implications of Southern High Plains Research**

Recommend Retention and Restoration of Grasslands Surrounding Playa Wetlands

| Why?    | Abundance & Community Structure Altered                      |
|---------|--------------------------------------------------------------|
|         | •Source Dynamics in Grassland Playas                         |
|         | •Disturbance Affects Natural Dynamics and Chaos              |
|         | Chaos can decrease probability of metapopulation extinction. |
|         | •Body Size is '-' Affected by Disturbance                    |
| Landsca | pe structure may be as or more important than landuse.       |

