

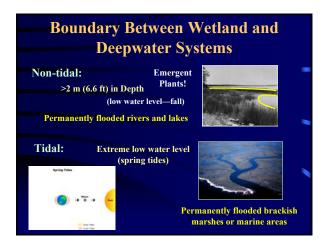
2) Estimate their area •Boundary of development

3) To create maps •<u>Management</u>, Excavation, Mitigation

Classification of Wetland and Deepwater Habitats of the United States

http://www.npwrc.usgs.gov/resource/1998/classwet/classwet.htm

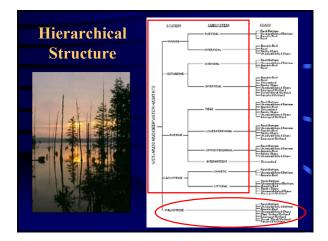
Classification of Wetlands and Deepwater Habitats of the United States

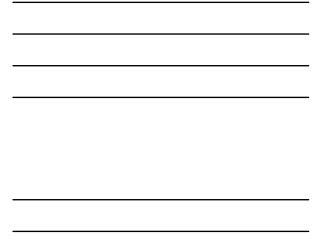

U.S. Department of the Interior Fish and Widdle Service

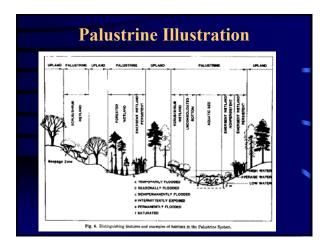

FWS/OBS-79/31 December 1979

Lewis Cowardin (USFWS) Virginia Carter (USGS) Francis Golet (URI) Edward LaRoe (NOAA)

Biological Classification System •Wetlands •Deepwater Habitats


Jurisdictional ➡USACE 1987 Manual


Palustrine System

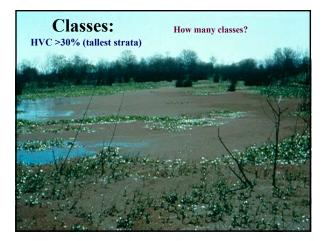

All freshwater wetlands dominated (>30% coverage) by trees, shrubs, <u>persistent</u> emergents, or emergent mosses and lichens

•Non-tidal or tidal

Also, all wetlands lacking above vegetation (or dominated by <u>non-persistent</u> emergents) having <u>all</u> these 4 characteristics:

- 1) <8 ha in size
- 2) No active wave formed shoreline
- 3) Depth <2 m
 4) Salinity <0.5ppt No subsystem!!
- <section-header>

Classes For Palustrine System


Describe the *general appearance* of the wetland in terms of either the dominant vegetation or substrate composition

If Horizontal Vegetative Cover (HVC) is >30%:

Class is distinguished based on the <u>uppermost</u> layer of vegetation (i.e., tallest) with HVC >30% (e.g., 50% HVC of Trees over 60% HVC of Shrubs would be a Forested <u>not</u> Scrub-shrub Wetland)

If Horizontal Vegetative Cover is <30%:

Class is distinguished based on the texture and composition of the <u>substrate</u>

Subclasses and Dominance Type

Subclass:

Use 50/20

Rule

Describe *finer* differences in vegetative life forms (often related to life history) or substrate characteristics (i.e., size [gravel vs. sand] or composition [sand vs. organic])

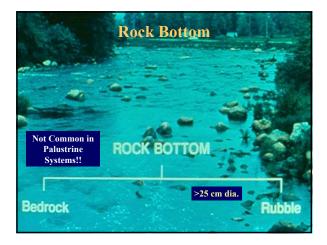
Dominance Type:

The taxonomic category subordinate to subclass.

•Dominant Plant Species (*if class is vegetation*) •Dominant Animal Species (*if class is substrate*)

Types of Palustrine Classes, Subclasses, and Dominance Types

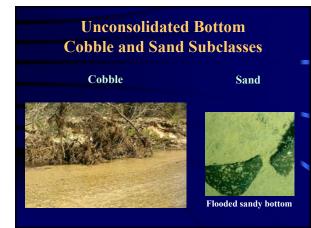
1) Rock Bottom:

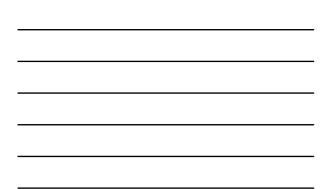

•>75% HC of stones, bolders, or bedrock •<30% HVC

Usually high-energy wetlands with well-aerated water.


A) <u>Bedrock</u>: >75% bedrock substrate

B) <u>Rubble</u>: <75% bedrock; >75% bedrock+bolders+stones


Dominance Types: Ephemeralla, Procambarus, Spongilla, and Lymnaea (pond snail)



Types of Palustrine Classes, Subclasses, and Dominance Types		
2) Unconsolidated Bottom:		
•>25% HC of soil particles smaller than stones		
•<30% HVC		
Usually low-energy wetlands that are flooded more permanently.		
A) <u>Cobble-gravel</u> : >50% c/g [*] C) <u>Mud</u> : >50% silt & clay		
B) <u>Sand</u> : >50% sand D) <u>Organic</u> : >50% <u>dead</u> or live organic matter		
Dominance Types:Gammarus (scuds), Physa (snail), Tubifex, and Canthocamptus (copepod)Depends on \overrightarrow{V} and Canthocamptus (copepod)		

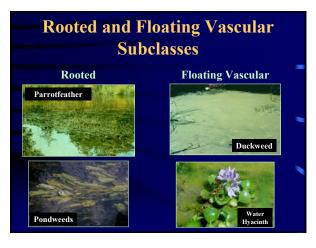
Unconsolidated Bottom Mud and Organic Subclasses

Types of Palustrine Classes, Subclasses, and Dominance Types

3) Aquatic Bed:

>30% HVC of plants that grow on or below the surface of the water; <30% HVC "taller" plants.

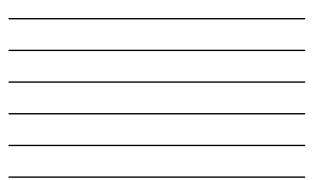
Usually low-energy habitats that are flooded permanently.

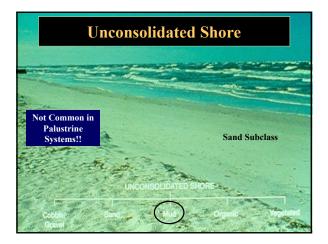

A) <u>Algal</u>: >50% algae *C) <u>Rooted Vascular</u>: >50% RV B) <u>Aquatic moss</u>: >50% moss D) <u>Floating Vascular</u>: >50% FV

Dominance Types: Chara, Fontinalis, Vallisneria, Ruppia, Nuphar, Lemna, and Eichhornia

Types of Palustrine Classes, Subclasses, and Dominance Types

4) Unconsolidated Shore:

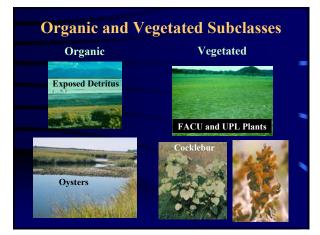

Shoreline areas with <30% HVC¹ and <75% HC of stone, bolders, or bedrock

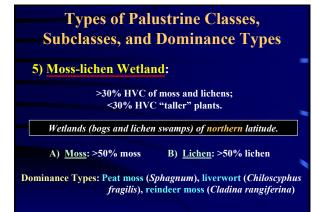

Shorelines lacking hydrophytes.

- A) <u>Cobble-gravel</u>: >50% c/g ^{*}C) <u>Mud</u>: >50% silt & clay
- B) <u>Sand</u>: >50% sand D) <u>Organic</u>: >50% <u>dead</u> or live organic matter

¹E) <u>Vegetated</u>: >50% non-hydrophytic, pioneer plants that die if flooded.

Dominance Types: Snails, worms, clams, Xanthium (cocklebur)





Types of Palustrine Classes, Subclasses, and Dominance Types

6) Emergent Wetland:

>30% HVC of erect, rooted hydrophytes, excluding mosses and lichens; <30% HVC "taller" plants.

Low energy wetlands (marshes, playas, prairie potholes)

A) <u>Persistent</u>: >50% HC of plants that remain standing at least until the beginning of the next growing season.


B) <u>Nonpersistent</u>: >50% HC of plants which fall to the surface of the substrate or water at the end of the growing season.

Dominance Types: Cattail (*Typha*), bulrush (*Scirpus*), wild millet (*Echinochloa*), wild rice (*Zizania*), *Panicums*

Types of Palustrine Classes, Subclasses, and Dominance Types		
7) <u>Scrub-shrub Wetland</u> :		
>30% HVC of shrubs (<6m [20 ft.] in height); <30% HVC of trees		
Low energy wooded wetlands (shrub swamps, pocosin)		
*A) <u>Broad-leaved Deciduous:</u> *C) <u>Needle-leaved Deciduous:</u> >50% BLD shrubs >50% NLD shrubs		
B) <u>Broad-leaved Evergreen</u> : D) <u>Needle-leaved Evergreen</u> : >50% BLE shrubs >50% NLE shrubs		
E) <u>Dead</u> : >50% dead shrubs		
Dominance Types: Salix, mangrove, tamarack, black spruce		

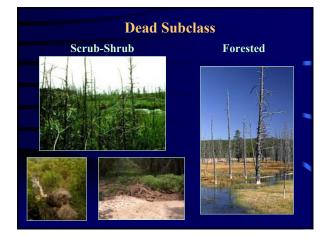
Types of Palustrine Classes, Subclasses, and Dominance Types 8) Forested Wetland: Note: Scrub-shrub wetlands can become forested wetlands

>30% HVC of trees (>6m [20 ft.] in height) Low energy wooded wetlands (swamps, bottoms, hammocks)

*A) <u>Broad-leaved Deciduous</u>: *C) <u>Needle-leaved Deciduous</u>: >50% BLD trees >50% NLD trees

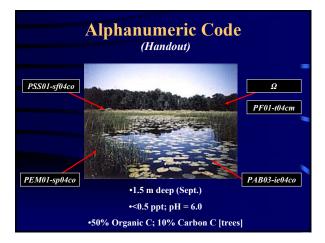
B) <u>Broad-leaved Evergreen</u>: D) <u>Needle-leaved Evergreen</u>: >50% BLE trees >50% NLE trees E) <u>Dead</u>: >50% dead trees

Dominance Types: Red maple, green ash, overcup oak, mangroves, baldcypress, tamaracks, white cedar

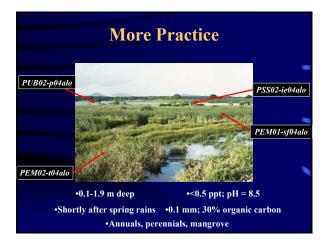




(8 Nontidal)	Criteria not as
1) Permanently Flooded	quantitative as USACE zones.
Water covers substrate in all y	vears.
2) Intermittently Exposed	
Water covers substrate in all y during drought.	vears, except
3) Semi-permanently Flooded	
Water covers substrate throug growing season in most years.	ghout the
4) Seasonally Flooded	
Water covers substrate for e especially early in the growin is absent by the end of the gr	ig season, but it


Water Regime Modifiers				
(8 Nontidal)	Indirect Indicators			
5) Saturated Substrate is saturated, but	drift & inundation lines, vegetation, etc.			
surface water is seldom present.				
6) Temporarily Flooded				
Surface water is present for brief periods during the growing season, but water table is far below the surface for most of the year.				
7) Intermittently Flooded				
Substrate is usually exposed. water can be present for var but w/o predictable seasonal 8) Artificially Flooded	iable durations			
Hydroperiod is controlled by control structures, and/or lev				

W	ater Chemistry	y Modifie	ers
Salinit	y:	РРТ	
	1) Hyperhaline	>40	
	2) Euhaline	30.0-40	
	3) Mixohaline	0.5-30	•
	*4) Fresh	<0.5	
pH:		pН	
	1) Acid	<5.5	
	2) Circumneutral	5.5-7.4	
	3) Alkaline	>7.4	



Soil Modifiers		
Soil Core Depth = 40 cm [16 in] COE		
 Mineral: A) Saturated Infrequently: 	Criteria same as before.	
•<20% dry-weight organic	carbon	
B) Saturated Frequently/Long Durations:		
+<18% dry-weight organic carbon if >60% of mineral portion is clay		
•<12% dry-weight organic carbon if no clay		
 12-20% dry-weight orga 	anic carbon if 0-59% clay	
2) Organic:	<0.002 mm dia.	
All substrates that have <u>more</u> organic carbon than above percentages.		

Special Modifiers			
1) Excavated	Excavated basin or channel.		
2) Impounded	Structure (dam) prevents outflow.		
3) Diked	Structure (levee) prevents inflow.		
4) Partly Drained	Water level has been artificially lowered, but hydrophytes and/or hydric soils present.		
5) Farmed	Soil is mechanically disturbed, but hydrophytes will reestablish if farming ceases.		
6) Artificial	Non-natural substrate. e.g., dredge spoil, automobiles, concrete		

