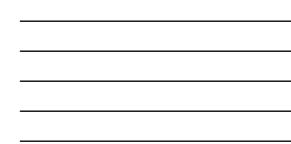
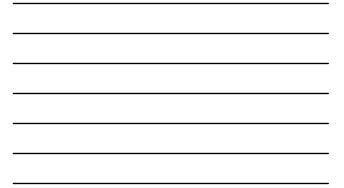
"Obtaining Reliable Estimates of Duck energy-days" at the 3 I.C. A STREET Photo by: R. M. Kaminski Matthew J. Gray, Ph.D. **College of Agricultural Sciences and** Natural Resources University of Tennessee-Knoxville

Lecture Structure


- North American Waterfowl Management Plan I.
- II. Duck energy-days
- **III. Estimating Food Resources**

Flyways and Waterfowl Trends Flyways: •Atlantic •Central •Mississippi •Pacific Declines:



1985 1986

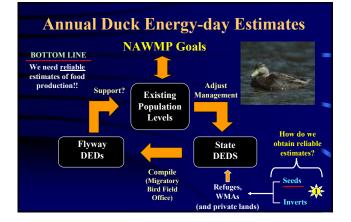
Waterfowl Foraging Carrying Capacity

(Reinecke et al. 1989) Duck energy-days The number of waterfowl that can be sustained in a given area for a given amount of time. Carrying Capacity = DED_{cropland} + DED_{moist-soil} wetlands + DED_{hardwood} bottomlands 1 DED = quantity of food necessary to feed 1 duck for 1 day

Q	uantifyir	ıg Du	ck Energy	v-days
		Princ	ce 1979	
Reinecl 19	17.0			Reinecke and Loesch 1996
DED =	Food Availa	ble (g [dı	ry]) x TME (ko	cal/g [dry])
DED =	Daily E	nergy Re	equirement (kc	al/day)
Available	Food for Water	fowl	TME Constants	DER Constant
 Moist-s Aquation 	oil Seeds : Invertebrates	Usual but see handouts	2.5 kcal/g 3.5 kcal/g	292 kcal/day

Why Estimate Duck Energy-days?

•To Determine if Sufficient Food Resources Exist on Migrating & Wintering Grounds to Support Continental Waterfowl Populations

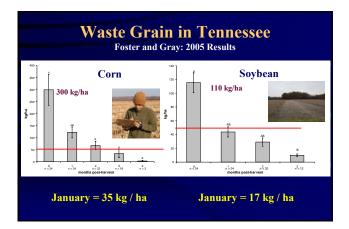


•To Determine Refuge or Management Area Contributions to Fulfilling Continental Goals of NAWMP State & Regional Objectives

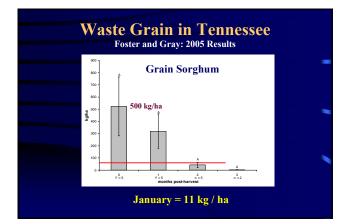
 For Example, 13.3 million DEDs =
 (795K)

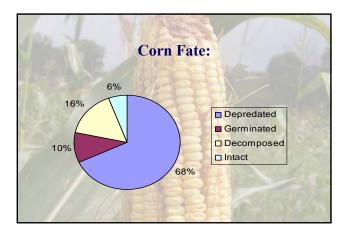
 (TN NWR)
 121,000 ducks for 110 days

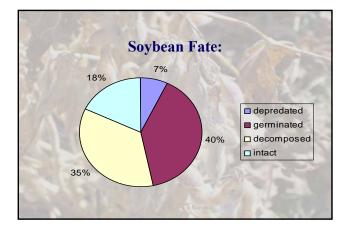
•To Evaluate Management Practices


	Quantifying Available Food	
3 Metho	ods:	
1)	"Constants" •An estimate of mass from <u>previous direct</u> sampling or published yields (i.e., crops).	Most Common
2)	Direct Estimate	
3)	•An estimate of mass from <u>current direct</u> sampling in your wetland or ag areas. Prediction Models •An estimate of mass from <u>current indirect</u> sampling in your wetland or ag areas.	

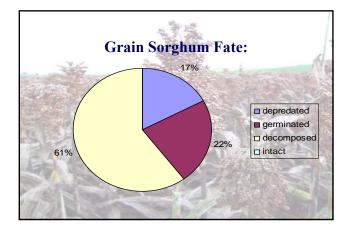
Commonly Used "Constants"					
Seed:			TME		
Reinecke et al. 1989		kg/ha	kcal/g ¹		
Croplands •Rice:	(80)	140-223	** 3.34		
(Post-harvest) •Grain Sorgh	um: (TX	148-436	3.50		
Moist-soil Wetlands (Senescence	e)	450	2.5		
All Plant Species Combined		(100–600)			
Hardwood Bottomlands •2	0%:	18	3.5		
Acorns: % Basal Area of Red Oaks •4	0%:	36	3.5		
Aquatic Invertebrates:	•Crop	0	—		
All Species Combined	•MS	15 (-31) 3.5		
Arner et al. 1974; Wehrle et al. 1995	•HBL	10	3.5		
¹ <u>Assumes</u> no	deteriora	tion and bir	d uniformity.		

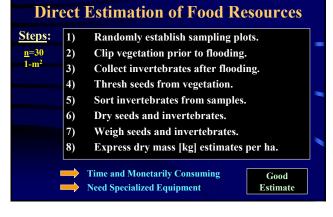




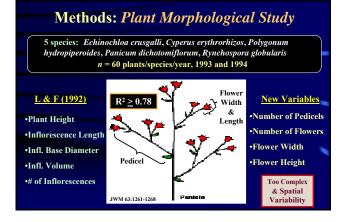


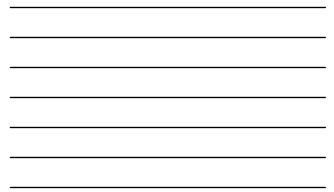
-

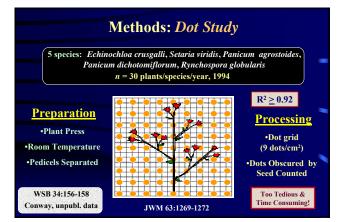

January			2 and a	St. Long		
Estimate		1045			//	2
Harvested						
Crop	Fields	Biomas	s (kg/ha)	DED/ha	LMVJV	
	(n)	mean	SE		estimate (DED/ha)	
	24	34.60	13.91	194.4	1250	- 8
Corn	24	5 1100				
Corn Grain sorghum	5	11.22	4.31	0	1188	Ze



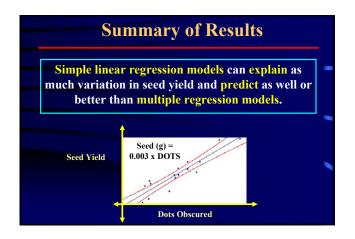
Using C	onstants for Food Resources	
	Easy to Use, No Fieldwork, nexpensive (<i>estimate area only</i>)	
Disadvantages:	Refuge or Unit Estimates are Merely a Consequence of Area.	States in the second
	Ignores habitat quality and management!	
	•MAV Estimates from the 80s may not be reliable. >New evidence suggests they may <u>overestimate</u> DED.	
	 Seed and invertebrate resources are <u>not</u> constant! For seeds, what there is at senescence, may not be what is available to birds when they arrive. 	
	For inverts, peak invertebrate production may not correspond to bird use (late winter, March).	


Direct Estimation of Food Resources


Advantages:	•The most <u>accurate</u> method for estin site-specific food resources. • <u>Wetland-specific</u> estimates.	nating
Disadvantages:	•Time Consuming •Specialized Equipment Required •Expensive	(intense field and lab work)
	managers do <u>NOT</u> have the resources seed and invertebrate production and (or several times during flooding).	


Estimating Food Resources Using Prediction Models (Laubhan & Fredrickson 1992; Gray et al. 1999a,b; Sherfy & Kirkpatrick 1999)

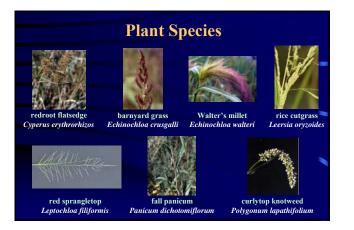
Seed Yield = $\beta_0 + \beta_1$ (Plant Morphology)



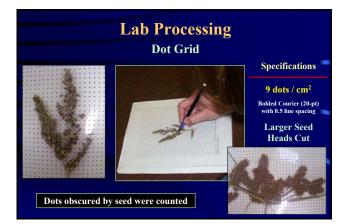
Estimating Food Resources with Models

Advantages:	•Wetland-specific estimates.
	•Faster, "easier", and less expensive than
	direct sampling.
	 Accurate estimate of food production.
	(BUT, maybe only where model was developed)
Disadvantages:	•Models tend to be manager unfriendly.
	≻Mathematical and botanical jargon.
	≻Variables can be tedious to measure.
	•Spatial dependency.
	>Can give inaccurate estimates outside of region

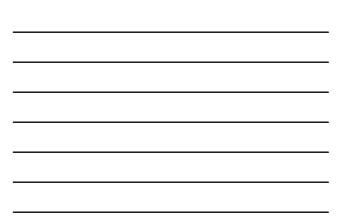
New Technology for Estimating Seed Yield in Moist-soil Wetlands				
-				
	Matthew J. Gray Institute of Agriculture Wetlands Program			

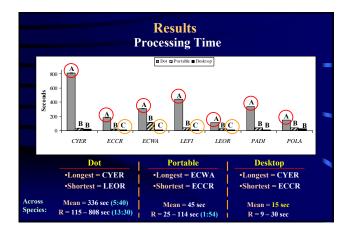


Objectives

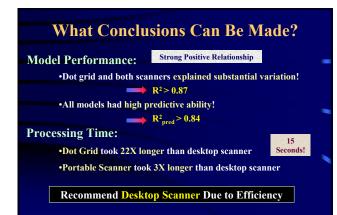

- 1) Test if scanned seed-head area explained significant variation in seed mass
- 2) Compare amount of variation explained between portable and desktop scanners and the dot grid
- 3) Compare amount of time necessary to scan seeds and count dots obscured by seed
- 4) Develop prediction models for all three methods for use in moist-soil management

7 Common Moist-soil Plant Species



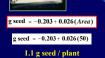


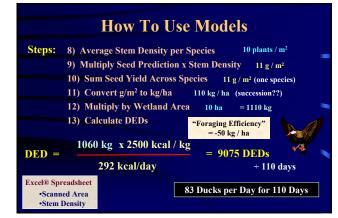
L	ab Processi	ng			
			-		
Thresh Seeds	Dry	Weigh	Y = g seed		
Stat	istical Ana	lyses			
Models: g seed = $\beta_0 + \beta_1$	$\mathbf{g}_1(DOTS)$ g seed = $\boldsymbol{\beta}_0$ +	β ₁ (Area_Desk)	SLR •No Intercept		
Performance: •R ² and R	$g \text{ seed } = \beta_0 + predicted$	$\boldsymbol{\beta}_{1}(Area_Port)$	•Year Indicator		
ANOVA: Did average processing time differ among techniques?					
(Tukey's HSD)			$\alpha = 0.05$		



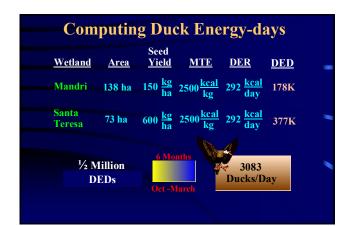
	t 59 rtable 59 sktop 59	Y = (0.0	002 × DOTS) + 0.247 116 × AREA) - 0.023 118 × AREA) - 0.209		964.2 966.7 1070.1	0.97		0.968 0.968 0.971	97%
									97%
Be	sktop 59	Y = (0.4	18 × AREA) – 0.209	1	1070.1	0.97	8	0.971	



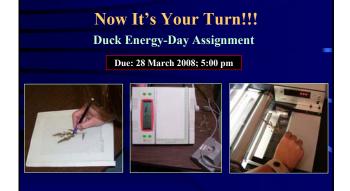




3) Collect Seed Head (s) from Plant
4) Bag and Press Seed Head
5) Scan Seed Head Per Plant


50 cm²6) Average Scanned Area Per Species7) Predict Seed Yield Per Plant

Ten 1-m² Plots



Summary of Problems with Current DED Estimates

1)	"Constants"
	≻May Overestimate.
	≻Not site-specific.
	≻Cannot Evaluate Management.
2)	Direct Estimation
	≻Costs too much.
3)	Prediction Models
	≻Not Manager Friendly??
	≻Regional Bias??

