

Lecture Structure

- I. North American Waterfowl Management Plan
- II. Duck-use Days
- **III. Estimating Food Resources**
- IV. Research Needs

Commonly Used "Constants"			
Seed:		TME	
Reinecke et al. 1989	kg/ha	kcal/g1	
Croplands •Rice: (80)	140-223**	3.34	
(Post-harvest) •Grain Sorghum: (TX	148-436	3.50	
Moist-soil Wetlands All Plant Species Combined (Senescence)	450 (100–600)	2.5	
Hardwood Bottomlands •20%:	18	3.5	
Acorns: % Basal Area of Red Oaks •40%:	36	3.5	
Aquatic Invertebrates: •Crop 0 —]
All Species Combined •MS	15 (1-31)	3.5	
Arner et al. 1974; Wehrle et al. 1995	10	3.5	
¹ Assumes no deterioration and bird uniformity.			

Dir	ect Estimation of Food Resources	
Steps:	1) Randomly establish sampling plots.	
<u>n</u> =30	2) Clip vegetation prior to flooding.	-
1-m ²	3) Collect invertebrates after flooding.	
	4) Thresh seeds from vegetation.	
	5) Sort invertebrates from samples.	
	6) Dry seeds and invertebrates.	
	7) Weigh seeds and invertebrates.	
	8) Express dry mass [kg] estimates per ha.	
	Time and Monetarily Consuming Need Specialized Equipment Good Estimate	

Seed Prediction Results: 4 Models				
	Our Data L & F	Best Model	L & F (1992)	Dot Model =
R ² adjusted	0.68-0.92	0.78-0.97	0.79-0.96	0.92-0.97
R ² _{predicted}	0.23-0.88	0.31-0.97	NAV	0.91-0.96
MSE	0.002-0.39	0.001-0.18	NAV	0.001-0.009
$\mathbf{C}_{\mathbf{p}}$	48.2-495.0	3.9-6.6	NAV	NAP
VIF	1.1-34.8	3.9-12.0	NAV	NAP
		NAV = Not Avai	lable, NAP =	Not Applicable

Simple linear regression models can explain as much variation in seed yield and aquatic invertbrate biomass and predict as well or better than multiple regression models. Seed Yield/ Invert Biomass Seed (g) = 0.023 x COND Dots Obscured/Conductivity

Es	tim	ating Available Food via Equations
Steps:	1)	Randomly establish sampling plots.
<u>n</u> =30	2)	Clip 1 randomly selected plant per spp.
1-m ²	3)	Count plant density per spp. per plot.
	4)	Measure water quality or depth.
	5)	Measure plant morphology or count
		number of dots covered by seed.
	6)	Estimate dry seed/plant & invertebrate
		mass/m ² using prediction equations.
	7)	Multiply estimate of seed mass/plant/spp.
		by x plant density for each species.
	8)	Convert estimates to kg/ha & $\sum_{\text{Species}}^{\text{kg/ha}}$

Estimating	Food Resources with Models
Advantages:	•Wetland-specific estimates.
	•Faster, "easier", and less expensive than direct sampling.
	•Accurate estimate of food production.
	(BUT, maybe only where model was developed)
Disadvantages:	•Models tend to be manager unfriendly.
	➤ Mathematical and botanical jargon.
Should use suite of	Variables can be tedious to measure.
equations developed closest to your site.	•Spatial dependency.
(MS, MO, VA)	➤ Can give inaccurate estimates outside of region (or management area) where model was developed.

Computing Duck-use Days		
Steps:	1)	Estimate food resources per ha.
	2)	Multiply #1 by the TME of food resource.
		── Use Published or Own Estimate(s)
	3)	Divided the product of #1 and #2 by the
		daily energy requirement of waterfowl.
		── Use Published or Own Estimate(s)
	4)	Compute DUD by multiplying #3 by
		area (ha) of wetland and $\sum_{\text{Habitat}} \sum_{\text{Exact}} \text{DUD}$
	5)	Express DUD as a total or daily
		estimate (i.e., divide by hydroperiod).
"Foraging	Efficien	cy" Correction Factor for #1: -50 kg/ha

