

Lecture Structure

- I. North American Waterfowl Management Plan
- II. Duck-energy days
- **III. Estimating Food Resources**

Waterfowl Foraging Carrying Capacity Duck energy-days (Reinecke et al. 1989) Duck energy-days The number of waterfowl that can be sustained in a given area for a given area for a given amount of time. Carrying Capacity = Image: Carrying Capacity = DED_{cropland} + DED_{moist-soil wetlands} + DED_{hardwood bottomlands} 1 DED = quantity of food necessary to feed 1 duck for 1 day

Quantifyin	ng Du	ck Energy	-days			
1.7	Prin	ce 1979				
Reinecke et al. 1989			Reinecke and Loesch 1996			
DED = Food Availa	ıble (g [dı	·y]) x TME (kc	al/g [dry])			
Daily Energy Requirement (kcal/day)						
Available Food for Waterfowl TME Constants DER Constant						
 Moist-soil Seeds Aquatic Invertebrates 	Usual but see Table 4.1	2.5 kcal/g 3.5 kcal/g	294 kcal/day			

Why Estimate Duck Energy-days?

•To Determine if Sufficient Food Resources Exist on Migrating & Wintering Grounds to Support Continental Waterfowl Populations

TW	RA =87.5	Million	DED	
Se .	See.	-	1	
20-	×	28	UAL I	
¥				
mine R	efuge o	r Mana	gement	

•To Determine Refuge or Management Area Contributions to Fulfilling Continental Goals of NAWMP State & Regional Objectives

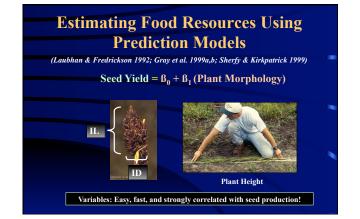
 For Example, 13.3 million DEDs =
 (795K)

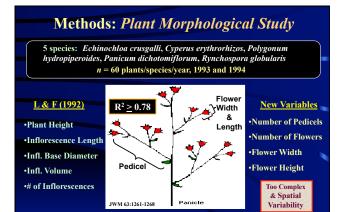
 (TN NWR)
 121,000 ducks for 110 days

•To Evaluate Management Practices

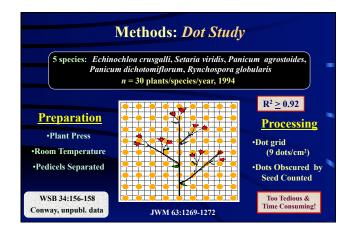
	Quantifying Available Food	
3 Meth	ods:	-
1)	"Constants" •An estimate of mass from <u>previous direct</u>	Most
2)	sampling or published yields (i.e., crops). Direct Estimate	Common
	•An estimate of mass from <u>current direct</u> sampling in your wetland or ag areas.	
3)	Prediction Models •An estimate of mass from <u>current indirect</u> sampling in your wetland or ag areas.	

Commor	ily Us	ed "Co	nstan	ts"	
Seed:				TME	
Reinecke et al. 1989			kg/ha	kcal/g1	
Croplands	•Rice:	(80)	140-223*	* 3.34	
(Post-harvest)	•Grain S	orghum: (TX)	148-436	3.50	
Moist-soil Wetland	ds		600	2.5	
All Plant Species Com	bined		(200–1200)		
Hardwood Botton	<u>ılands</u>	•20%:	18	3.5	
<u>Acorns:</u> % Basal Area of I	Red Oaks	•40%:	36	3.5	
Aquatic Invertebra	tos.	Course	0		
Aquatic Invertebra All Species Combined		•Crop •MS	0 15 (1-	31) 3.5	
Arner et al. 1974; Wehrle e		•HBL	10	3.5	
		<u>les</u> no deteriorat	ion and bird	uniformity.	

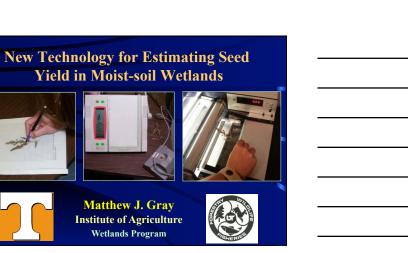


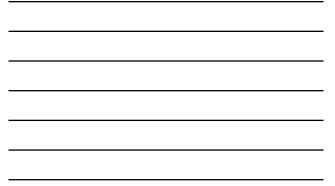

Direct Estimation of Food Resources


Steps:	1)	Randomly establish sampling pl	ots.
<u>n</u> =30	2)	Clip vegetation prior to flooding	[.
1-m ²	3)	Collect invertebrates after flood	ing.
	4)	Thresh seeds from vegetation.	
	5)	Sort invertebrates from samples	
	6)	Dry seeds and invertebrates.	
	7)	Weigh seeds and invertebrates.	
	8)	Express dry mass [kg] estimates	per ha.
	\rightarrow	Time and Monetarily Consuming	Good
	\rightarrow	Need Specialized Equipment	Estimate


Direct Estimation of Food Resources Advantages: •The most accurate method for estimating site-specific food resources. •Wetland-specific estimates. Disadvantages: •Time Consuming •Specialized Equipment Required (intense field and lab work) •Expensive Most wetland managers do NOT have the resources to directly estimate seed and invertebrate production annually (or several times during flooding).

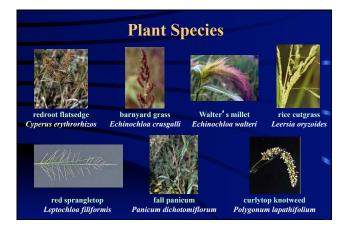




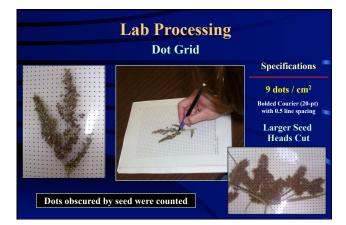


Estimating Food Resources with Models

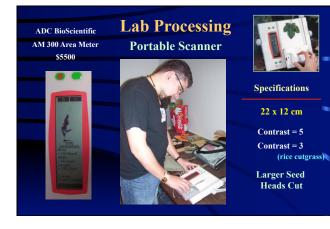
Advantages:	•Wetland-specific estimates.	
	•Faster, "easier", and less expensive than	
	direct sampling.	
	 Accurate estimate of food production. 	
	(BUT, maybe only where model was developed)	
Disadvantages:	•Models tend to be manager unfriendly.	
	>Mathematical and botanical jargon.	
	► Variables can be tedious to measure.	
	•Spatial dependency.	
	➤Can give inaccurate estimates outside of region (or management area) where model was developed.	

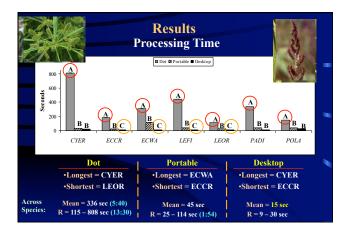


Objectives

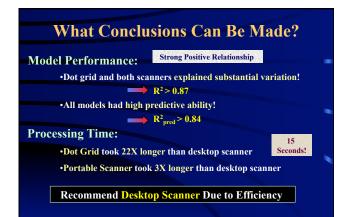

- 1) Test if scanned seed-head area explained significant variation in seed mass
- 2) Compare amount of variation explained between portable and desktop scanners and the dot grid
- 3) Compare amount of time necessary to scan seeds and count dots obscured by seed
- 4) Develop prediction models for all three methods for use in moist-soil management

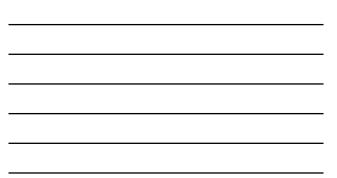
7 Common Moist-soil Plant Species

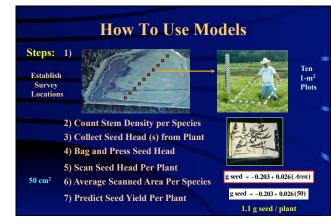


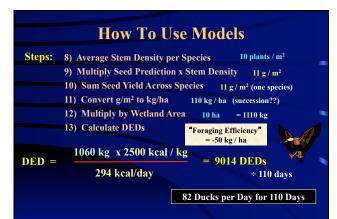


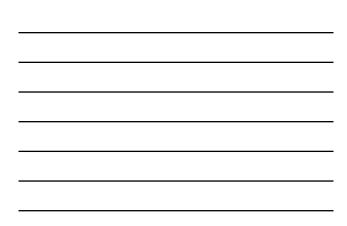
Lab P	Processing
Thresh Seeds	Dry Weigh Y = g seed
Statistic	al Analyses
Models: g seed = $\beta_0 + \beta_i(DOTS)$	g seed = $\beta_0 + \beta_1(Area_Desk)$ SLR •No Intercept
Performance: •R ² and R ² _{predicted}	g seed = $\boldsymbol{\beta}_{0} + \boldsymbol{\beta}_{1}(Area_Port)$ •Year Indicator
ANOVA: Did average proces (Tukey's HSD)	sing time differ among techniques? $\alpha = 0.05$




Results:	Method	n	Equation	F	R ²	R ² _{pred}	
redroot flatsedge	Dot	59	Y = (0.002 × DOTS) + 0.247	964.2	0.970	0.968	-
	Portable	59	$Y = (0.016 \times AREA) - 0.023$	966.7	0.970	0.968	97%
	Desktop	59	$Y = (0.018 \times AREA) - 0.209$	1070.1	0.973	0.971	







	Wetlands Program University of Tennessee- Knoxville
W	e' ll Process Seed Heads for You!
	•\$20 / m ² plot if seed heads are pressed
	•\$25 / m ² plot if seed heads are <u>not</u> pressed
•§	5800 per plant species to develop new models
	 Collect One Random Seed Head per Species per Plot Count Stem Density per Species per Plot n = 10 plots
	3) Press Seed Heads for One Week or Mail Directly to UT s per Impoundment: -seed Production and DED per Plant Species -Total Seed Production and Total DED

Summary of Problems with Current DED Estimates

1)	"Constants"
_)	≻May Overestimate.
	≻Not site-specific.
	≻Cannot Evaluate Management.
2)	Direct Estimation
	≻Costs too much.
3)	Prediction Models
	≻Not Manager Friendly??
	≻Regional Bias??

Estimating Seed Yield and Duckenergy Days in Moist-soil Wetlands

http://fwf.ag.utk.edu/mgray/DED/DED.htm

		Enter Dots (#) or	Enter Stem Density	Prediction	Prediction	Enter Wetland	Prediction	Prediction	
Plant Species	Method	Scanned Area (cm ²)	(plants / m ²)	= kg seed / ha	=DED / ha	Acreage (ha)	=Total Kg Seed	=Total DED	
Redroot flatsedge	Dot			(0		0	0	
	Portable								
	Desktop				0		0	0	
	Dot				0		0	0	
	Portable						0	0	
	Desktop			(0		0	0	
Walter's milet	Dot				0		0	0	
	Portable						0	0	
	Desktop				0		0	0	
ted sprangletop	Dot				0		0	0	
	Portable				0		0		
	Desktop				0		0	0	
tice cutgrass	Dot				0		0	0	
	Portable						0		
	Desktop				0		0	0	
Fall pank um	Dot				0		0	0	
	Portable				0		0	0	
	Desktop				0		0	0	
unytop knotweed	Dot				0		0	0	
	Portable				0		0	0	
	Desktop				0		0	0	

