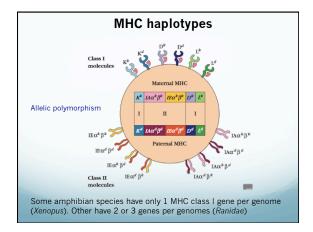
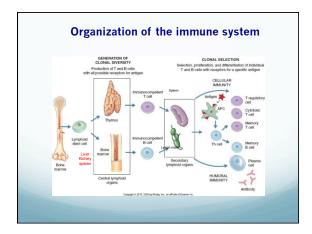
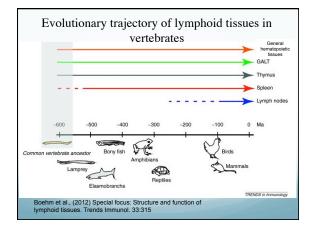
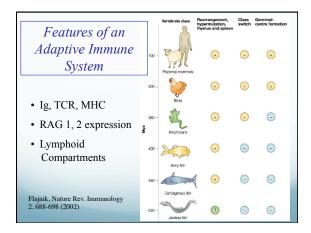

An adaptive Immune System is present in all jawed vertebrates

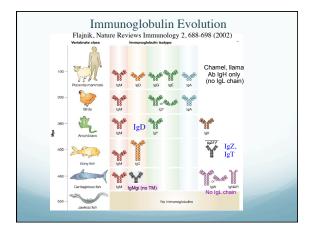
Characterized by:

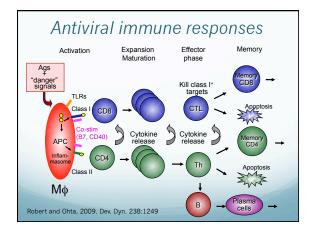

- > a wide somatic diversification of immune receptor repertoires
- high specificity of immune receptors for antigens,
- long term immunological memory
- > and a complex cytokine- and chemokine-mediated regulatory network
- Immunoglobulin (IgM, IgG or IgG-equivalent IgY, IgD Fish IgZ, IgT)
- T Cell Receptor $(\alpha, \beta, \gamma, \delta)$
- MHC class II, classical class Ia (selection), nonclassical MHC class Ib
- RAG-1, 2 mediated gene rearrangement, TdT
- Somatic hypermutation (AID-mediated)
- Primary and secondary lymphoid tissues (e.g. thymus, spleen, bone marrow, lymph nodes)

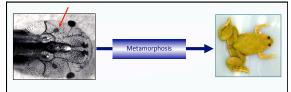


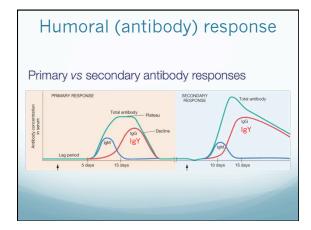




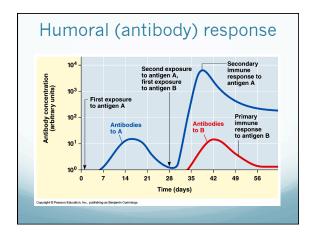




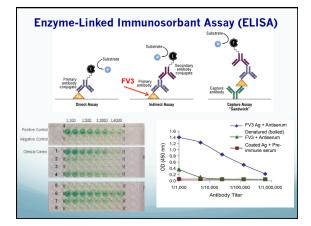




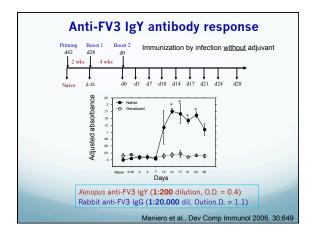
- > External development , absence of maternal influences on embryos
- Tadpoles are immunocompetent but immature
- > Immune system develop early (10 days of age)
- > Only about 20,000 T cells, mainly innate T cells, in tadpoles
- > No classical MHC class I protein expression until metamorphosis
- > No NK cells, weaker T cell responses than adults
- > Drastic remodeling of the immune system during metamorphosis
- > Thymocytes degenerate, new thymic education from new progenitors

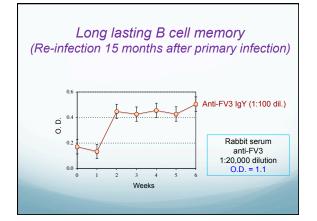

Urodelean adaptive immunity

- Relatively poor adaptive immunity compared to anurans
- Low IgM antibody heterogeneity (no specific IgY is produced
- Expanded MHC class I repertoire (~100 genes) that may include classical and nonclassical MHC class I as well as a non-polymorphic MHC class II
- Based on chronic rejection of allografts and xenografts, weak immune responses appear to characterize most species of salamanders
- High susceptibility to ranavirus infection
- But still able to survive in pathogen-rich environments

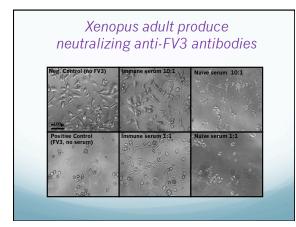


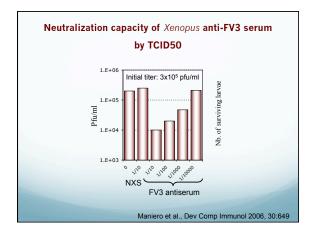
5

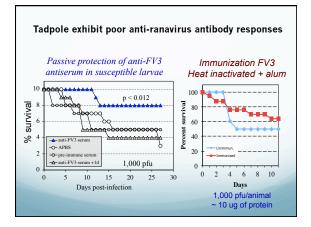


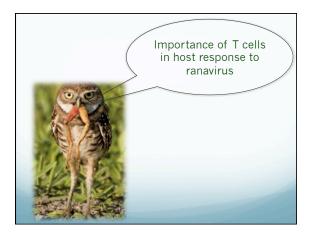


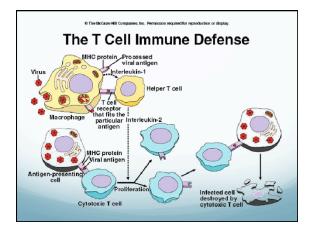
Humoral response


- Xenopus and mammals have similar organization and usage of their Ig genes (RAG-dependent VDJ rearrangements)
- Thymus-dependent switch IgM to IgY (IgG functional equivalent), T-B collaboration
- But *Xenopus* antibodies are limited in heterogeneity, mature poorly in affinity (less than 10 fold) and their serum titer increase only slightly during a secondary response
- How important is the humoral response in the resistance against natural pathogens such as FV3 infection?



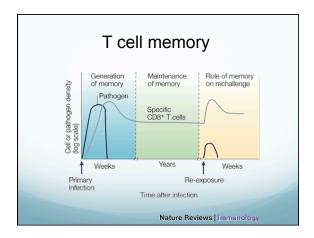




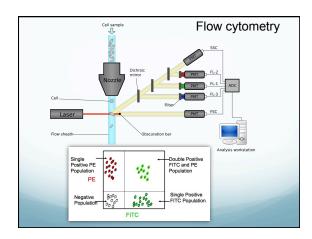


Summary I

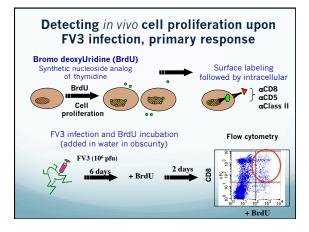
- Anuran amphibians like *Xenopus* are capable to generate effective antibodies (IgM and IgY) against ranaviruses
- More efficient, IgY, antibody response is elicited during a secondary infection (No anti-FV3 Ab detected in adult sera during a primary infection in absence of adjuvant in *Xenopus*)
- FV3-specific IgY antibodies (thymus-dependent IgG equivalent) detected from 10 up to 24 days after re-infection (no adjuvent)
- · B cell memory lasting at least 15 months after a first infection
- Serum of immunized frogs contain antibodies that can neutralize ranavirus (*Xenopus* adults can generate potent neutralizing anti-FV3 antibodies, that are able to provide passive protection to susceptible tadpoles
- Compared to adult frogs, tadpoles exhibit poor anti-ranavirus antibody response

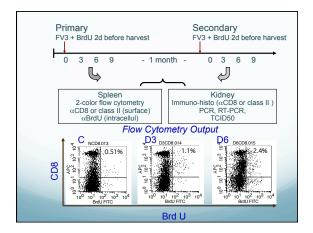


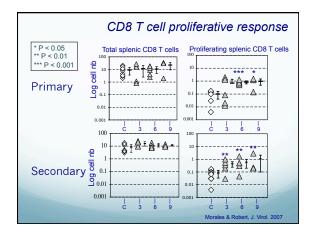
Assessing T function by sublethal y-irradiation

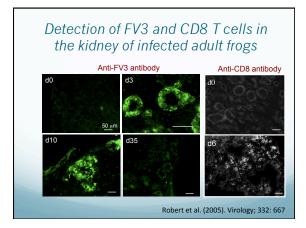

- T cell differentiation in the thymus is dependent on cell division, which is very sensitive to γ-irradiation
- $\Rightarrow~$ Whole body $\gamma \cdot irradiation~5$ to 10 Gray depletes mostly thymocytes and T cells
- $\diamond~$ This impairs adaptive immunity for 1 to 2 week (e.g., Skin graft rejection)
- $\Leftrightarrow~$ Resistant adult Xenopus become susceptible and die from FV3 infection following sublethal $\gamma\text{-}irradiation$
- $\diamond~$ Infected $\gamma\text{-irradiated}$ frogs also release more virus into the environment

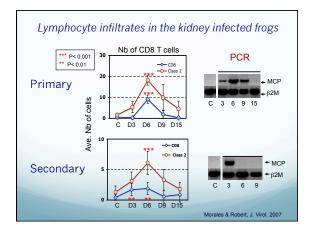
More specific assessment of CD8 T cells by Ab treatment

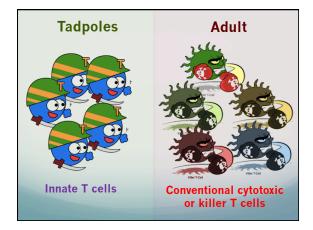

In vivo CD8 depletion by anti-CD8 mAb-treatment increases susceptibility to FV3 in adults

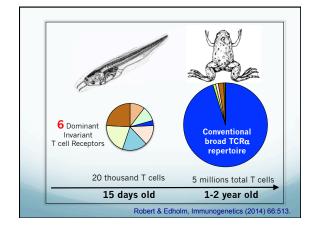


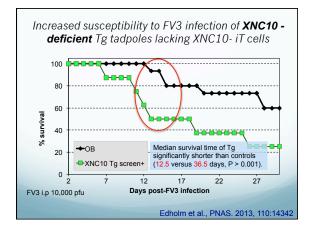


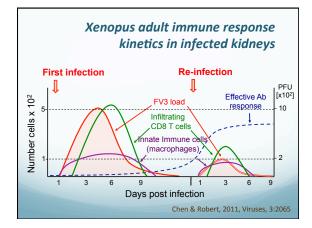


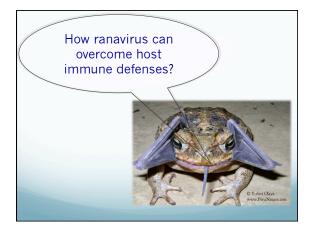












Summary II

- CD8 T cells play a major role during a primary ranaviral infection
 - $\succ~\gamma \cdot irradiated$ adults are more susceptible to FV3 infection
 - In vivo CD8 depletion with anti-CD8 mAb-treatment increases susceptibility to FV3 in adults
 - CD8 T cell infiltrate infected tissues then contract during viral clearance
- Critical involvement of CD8 T cells during a ranaviral secondary infection and immunological memory
 - ➢ Faster recovery of Infected adults
 - Faster infiltration of CD8 T cells and class II⁺ cell in kidneys
 Faster viral clearance
 - Critical involvement of XNC10-restricted innate T cells

Virulence

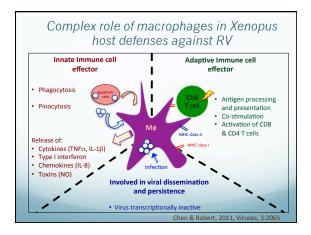
Ability of a virus to cause disease in the infected host animal

Virulence genes encode molecules that contribute to the pathogenicity of the organism and enable them to achieve the following:

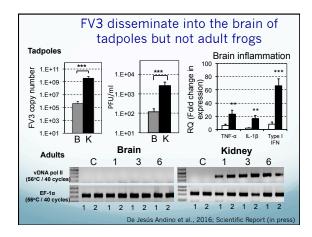
- > Viral replication
- Invasiveness (colonization of a niche in the host, attachment to cells) > Þ
- Tropism Enable the virus to spread in the host ۶
- Intrinsic cell killing effects
- Dotain nutrition from the host
 Immune evasion, immune suppression (avoiding immune recognition, modification and inhibition of immune response)
- Immune modulators:
- Apoptosis Cytokine or immune receptor mimics (Virokines, viroreceptors)
- Complement binding proteins
- Modifiers of MHC class I and class II pathways

Immune evasion strategies of ranaviruses

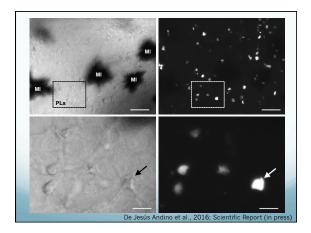
Ranaviruses can:

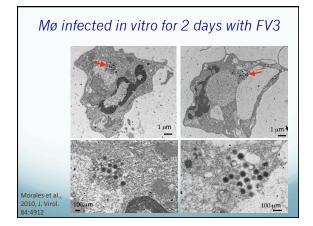

- Cross species barriers of many ectothermic vertebrates, suggesting potent immune evasion strategies
- · Persist quiescently in resistant host species, which may serve as asymptomatic carriers for viral dissemination
- Disseminate to immune privileged and distal end-organs and tissues and immune
- Persist quiescent in cells such as macrophages
- Likely to use an arsenal of virulence and immune evasion viral genes (function of only 1/3 of the 98-105 ${\rm ORFs}$ ٠ known or inferred based on sequence homology)

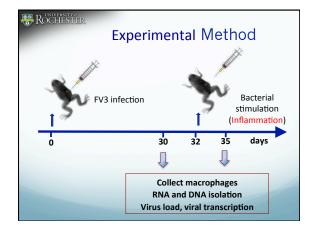
Putative ranavirus virulence and immune evasion genes

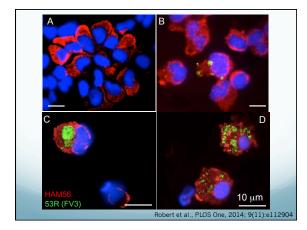

 Some virulence genes identified by sequence homology
 Characterization of immune evasion genes by sitespecific viral gene deletion or knockout

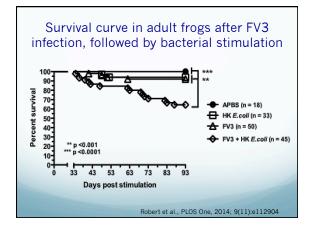
- **1. vIF2***α* **homologue**: Antagonist of protein kinase R (PKR)
- 2. Caspase activation and recruitment domain-containing (CARD) protein: Interfere with CARD domains containing pro-apoptotic, pro-inflammatory and/or interferon responsive
- 3. β-hydroxysteroid dehydrogenase homolog: may play a role in dampening host immune responses
- 4. 18K immediate-early protein: unknown function but conserved among ranaviruses


De Jesús Andino et al., 2015; Virology 485:162









Host immunity to ranavirus

* Adults: Resistant, clear FV3 within 2 weeks

- Early innate immune response
- > Critical involvement of cytotoxic T cells and antibodies
- > FV3 persists quiescent in some asymptomatic adults
- Immunological memory. Upon secondary infection: faster recovery, viral clearance & T cell response; and protective antibodies
- * <u>Tadpoles</u>: More susceptible, most succumb infection
- Less efficient B and T cell responses (mainly innate T cells)
- delayed and/or inadequate innate anti-FV3 response
- > Inefficient viral clearance & wider tissue dissemination
- > Ranaviruses may be more pathogenic in tadpoles