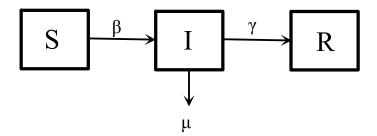
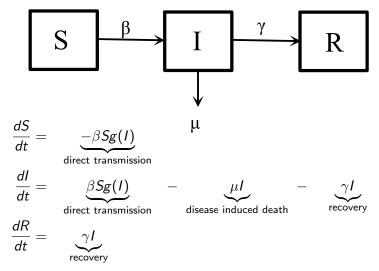
Ranavirus SIR Model

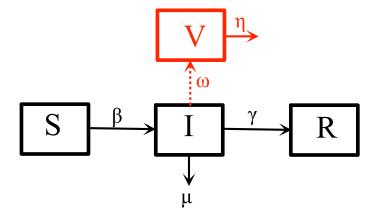
Angela Peace Department of Mathematics and Statistics Texas Tech University

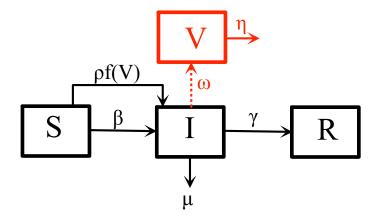
March 23, 2016 Global Ranavirus Consortium Course

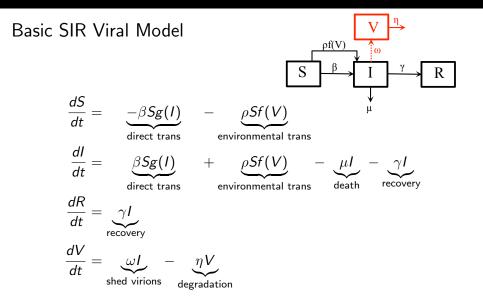



Outline

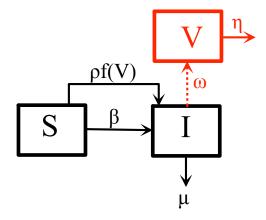
- Review basic SIR differential equations model
- Formulate model for Ranavirus
 - direct transmission
 - environmental transmission
 - necrophagy transmission
- Parameterize model
 - Possible due to lots of work done by: Suzanne O'Regan, Jennifer A. Spatz, Patrick N. Reilly, Rachel D. Hill, E. Davis Carter, Rebecca P. Wilkes, Debra L. Miller, Matt Gray
- Model simulations
- Update model to be more realistic

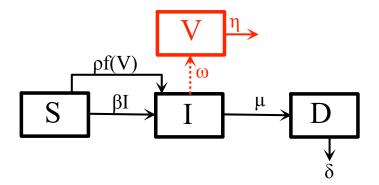

Basic SIR Model review

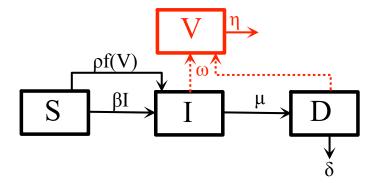

Basic SIR Model review

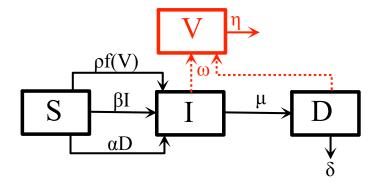


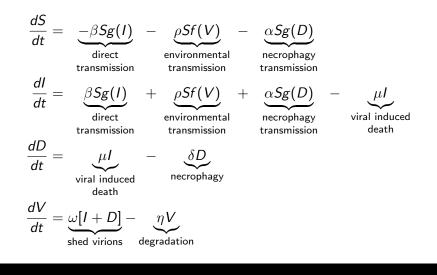
Basic SIR Viral Model




Basic SIR Viral Model






SI Viral Model without Recovery

Frequency-dependent vs density-dependent transmission

- frequency-dependent tranmission
- per-individual contact rate is independent of population density
- Total population: N(t) = S(t) + I(t)

$$g(I)=I/N(t)$$

- density-dependent transmission
- transmission scales with population density

$$g(I) = I$$

Environmental transmission

The environmental contact rate function takes the following form:

$$f(V) = \frac{V}{V + \kappa}$$

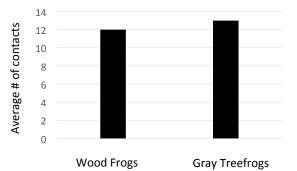
where κ is the ranavirus ID50

Parameterization

ϕ	probability of infection
с	contact rate
ρ	environmental contact rate
β	direct transmission rate $\beta = \phi c$
ω	virion shedding rate
μ	diseased induced mortality
κ	ID50
$1/\delta$	mean dead tadpole survival time
α	necrophagy transmission rate $lpha=\phi c$
$1/\eta$	environmental virion persistence time

Parameterization

ϕ	probability of infection
С	contact rate
ρ	environmental contact rate
β	direct transmission rate $\beta = \phi c$
ω	virion shedding rate
μ	diseased induced mortality
κ	ID50
$1/\delta$	mean dead tadpole survival time
α	necrophagy transmission rate $lpha=\phi c$
$1/\eta$	environmental virion persistence time


We'll talk about parameterizing these values today based on recent empirical data.

Contact Rate Experiment

- 1 infected frog in a 12-L tub with 20 susceptible frog.
- monitored the number of contacts between infected frog with susceptible frogs over 10 minutes
- monitored at 2, 4, and 6 hours

Contact Rate Experiment

- 1 infected frog in a 12-L tub with 20 susceptible frog.
- monitored the number of contacts between infected frog with susceptible frogs over 10 minutes
- monitored at 2, 4, and 6 hours

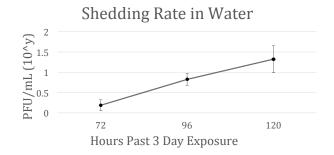
Contact Rate Parameters

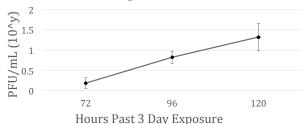
Parameter	Description	unit
С	contact rate	1/day
ρ	environmental contact rate	1/day

Contact Rate Parameters

Parameter	Description	unit
С	contact rate	1/day
ρ	environmental contact rate	1/day

- average 12 contacts in 10 minutes \implies 1.2 contacts/min
- c = 1728 / day
- $\bullet\,$ assume $\rho=1728$ / day

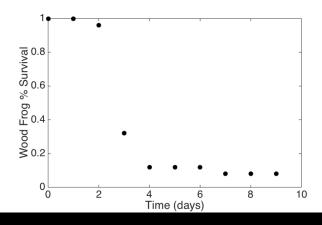

Parameter	Description	unit
ω	virion shedding rate	PFU/mL/day/individual

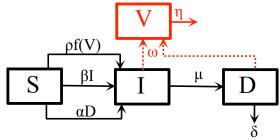

Parameter	Description	unit
ω	virion shedding rate	PFU/mL/day/individual

- 1 infected individual in 1L fresh water
- took water samples at 3, 6, 12, 24, 48 and 72 hours
- measured viral load

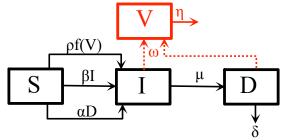
Parameter	Description	unit
ω	virion shedding rate	PFU/mL/day/individual

- 1 infected individual in 1L fresh water
- took water samples at 3, 6, 12, 24, 48 and 72 hours
- measured viral load

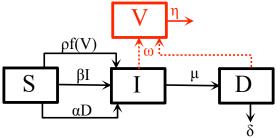


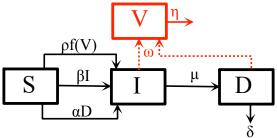

Shedding Rate in Water

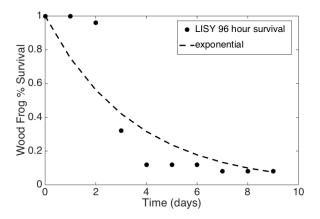
- Consider slope between 72 and 96 hours = $\frac{10^{0.8}-10^{0.2} \text{ PFU/mL}}{24 \text{ hours}} = 5.11$
- \bullet Consider slope between 96 and 120 hours $=\frac{10^{1.3}-10^{0.8}\mbox{ PFU/mL}}{24\mbox{ hours}}=14.36$
- Average these 2 values to get $\omega = 9.97 \text{ PFU/mL/day/individual}$


- Experiment: 1 infected frog (exposed 96 hours ago)
- Contact with Susceptible frogs
- Monitored mortality over time

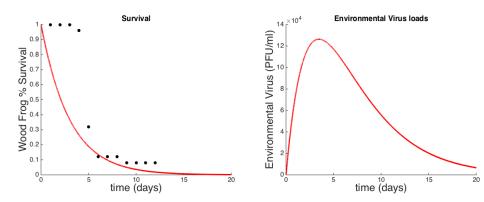
- Experiment: 1 infected frog (exposed 96 hours ago)
- Contact with Susceptible frogs
- Monitored mortality over time




 $\bullet \ \mu = {\rm disease}$ induced mortality


- $\mu = \text{disease induced mortality}$
- $\frac{1}{\mu}$ = length of infection period

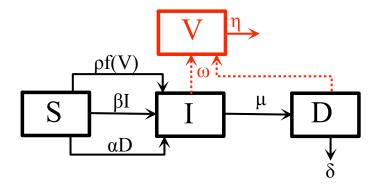
- $\bullet \ \mu = {\rm disease}$ induced mortality
- $\frac{1}{u}$ = length of infection period
- Above model assumes this is exponentially distributed



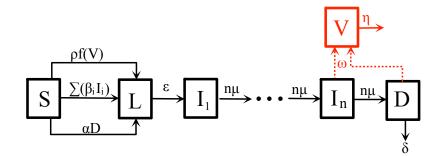
- $\mu = \text{disease induced mortality}$
- $\frac{1}{u}$ = length of infection period
- Above model assumes this is exponentially distributed
- This means μ is constant and does not depend on the time spent in the compartment
 - ie: A frog that has been infected for 1 day is just as likely to die as a frog that has been infected for 3 days.
 - A unrealistic assumption of the model!

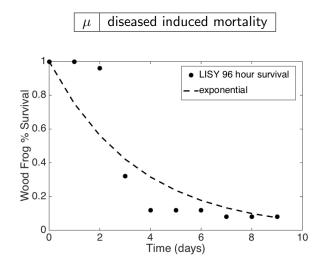
Fit exponential function $y = e^{-\mu t}$

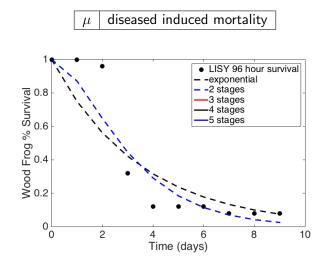
Model Simulations

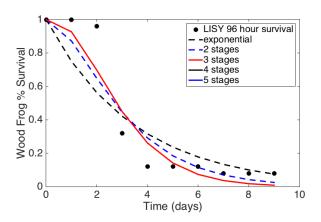

Update Model

- Add in a Latent compartment
 - A frog exposed to the virus isn't immediately infectious

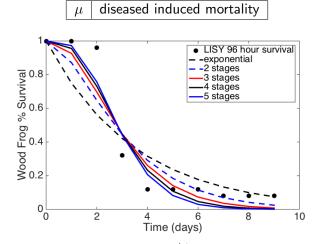

Update Model

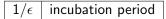

- Add in a Latent compartment
 - A frog exposed to the virus isn't immediately infectious
- Consider a gamma distribution for mortality
 - probability of mortality increases the longer the individual resides in the infection class
 - Can achieve this by adding in stages of infection (multiple I compartments)
 - This works because the sum of a sequence of independent exponentially-distributed random variables is gamma-distributed

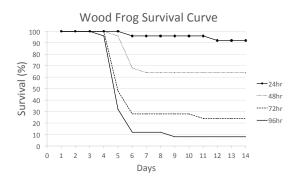

Base Model


Full Model

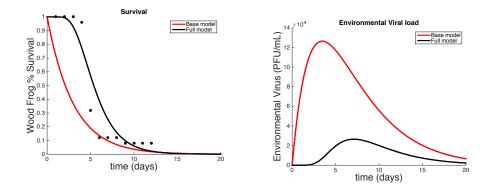


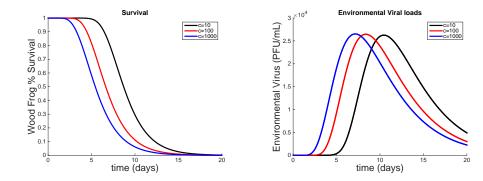




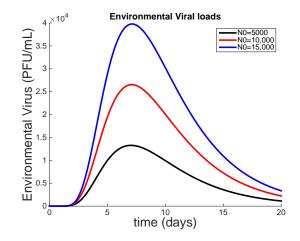


Using 5 stages we get $\mu =$ 0.3329 /day


Full Model: Incubation Parameter



We assume $\frac{1}{\epsilon} = 1$ day


Base vs. Full Model

Full Model Simulations: Vary Contact Rate (density)

Full Model Simulations: Vary Population Size

