
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

References

- Chapt. 8 in the Ranavirus Book, section on Models
- Supplemental information has the Matlab code for the wood frog model
- Earl and Gray. 2014. Introduction of Ranavirus to isolated Wood Frog populations could cause local extinction. EoHealth 11: 581-592
- Unpublished work: Earl, Chaney, Sutton, Lillard, Kouba, Langhorne, Krebs, Wilkes, Hill, Miller, and Gray. In revision Ranavirus could facilitate local extinction of rare amphibian species. (Dusky gopher frog and boreal toad)

Die-offs and Declines

- Amphibian die-offs quite dramatic
- adults in Europe
- tadpoles in North America (Wheelwright et al. 2014)
- Declines
- common frog (Rana temporaria) (Teacher et al. 2010)
- whole communities in Spain (Price et al. 2014)
- Could ranavirus cause extinction?

Population Models

- Great tool to examine how changes in survival might affect populations
- Apply estimates of survival and fecundity to starting population sizes
- estimate what may happen in the future by simulating mortality and reproduction for some number of years
- Years with ranavirus: if p is the probability of survival $p=p_{\text {typical }} \times p_{\text {ranavirus }}$
$\left(\begin{array}{l}N_{N_{m}(t)} \\ N_{1}(t) \\ N_{2}(t)\end{array}\right)=\left(\begin{array}{lll}0 & 0 & F \\ p_{1} & p_{2} & 0 \\ 0 & p_{3} & p_{4}\end{array}\right) \times\left(\begin{array}{l}N_{\rho_{m}(t-1)} \\ N_{l(t-1)} \\ N_{2+(t-1)}\end{array}\right)$

Effects of Ranavirus

- Start with the most likely scenario where extinction of a single population could occur
- closed populations
- very susceptible species
\qquad
\qquad
\qquad
\qquad
- Looked at experimental challenge trial data to choose species \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\left(\begin{array}{r}
N_{\mathrm{pm}}(t) \\
N_{1}(t) \\
N_{2}(t) \\
N_{3+}(t)
\end{array}\right)=\left(\begin{array}{rrrr}
0 & F_{1} & F_{2} & F_{3} \\
p_{1} & 0 & 0 & 0 \\
0 & p_{2} & 0 & 0 \\
0 & 0 & p_{3} & p_{4}
\end{array}\right) \times\left(\begin{array}{r}
N_{\mathrm{pm}}(t-1) \\
N_{1}(t-1) \\
N_{2}(t-1) \\
N_{3+}(t-1)
\end{array}\right)
$$

- Very simple stage-structured matrix model of females
\qquad
\qquad
\qquad
\qquad
\qquad
- $\mathrm{N}=$ population size, $\mathrm{p}=$ probability of survival, $\mathrm{F}=$ fecundity, t= time (years)

Model Implementation

- Used published parameters that represent a very robust population (Harper et al. 2008)
- Built in stochasticity in the model- drew random values for parameters from a normal distribution each year \qquad
- Sensitivity analysis- which parameter values change the model the most? \qquad
- Survival from eggs to juvenile has most influence

Simulations

- Ranavirus- challenge trial data for each life stage
- Die-off concentrations of virus ($10^{3} \mathrm{pfu} / \mathrm{mL}$)
- Only one life stage is exposed at a time in the pond
- Examined different exposure intervals
- Examined different carrying capacities (\# of adult females)
- Ran each scenario 1000 times- calculated probability of extinction and time to extinction \qquad

Extinction Probability over 1000 Years Wood Frogs

...... Egg Stage
----- Hatchling Stage
-Larval or Metamorph Stage

Exposure Interval (years)

Earl and Gray (2014) EcoHealth 11: 581-592. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wood Frog Results

- Increase in extinction probability, time to extinction, and population declines with increasing frequency of ranavirus exposure
- Most effects occur with ranavirus in the larval or metamorph stage
- highest mortality with exposure
- life stage with highest sensitivity
- Concerning, but
- most wood frog populations have metapopulation structure allowing immigration to mitigate declines
- widespread distribution indicates low conservation concern

Next Step

\qquad

- Examine species of actual conservation \qquad concern
- Dusky gopher frog (Lithobates sevosus)
- Boreal toad (Anaxyrus boreas boreas)
- Examine effects of immigration where \qquad appropriate- Boreal toad

Dusky Gopher Frog- Lithobates sevosus

\qquad

- One of the most endangered frogs in the USA- listed in 2001
- Only one regular, viable population- Glen's Pond (MS)
- Pond breeder- eggs in Dec.
- Metamorphs emerge in June when the pond dries
- Adults in long leaf pine often associated with Gopher Tortoise Burrows

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
- 3 stage mode
\qquad
- Parameterized using data from 1995-2001 monitoring Glen's pond (Richter etal. 2002, 2003) \qquad
- Hydroperiod threshold for metamorph production
\qquad
- examined the Glen's pond avg. hydroperiod and a nonlimiting hydroperiod
 \qquad
\qquad

\qquad

Boreal Toad Ranavirus Susceptibility

\qquad

Boreal Toad Model

\qquad

- 7 stage model: years 1-5, breeders, \qquad nonbreeders
- Females skip breeding at least every other year \qquad
 \qquad
\qquad
\qquad
\qquad

Other Features

- Different Carrying Capacities: 50-250 adult females
- Key question: Will immigration "rescue" populations from ranavirus?
- Low levels of immigration
- Muths et al. 2006 found only 17 males and 3 females switched breeding sites out of >1900 captures over 15 years
- Model: immigration of 1 adult female over different intervals- every 2-50 years

Boreal Toads:
 Extinction Probability (150 years)

Boreal Toads: Time to Extinction \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions

- Ranavirus has the potential to cause extinction in highly susceptible species
- in common species with no immigration
- in endangered species
- in species of conservation concern even with low levels of immigration
- Extinction risk varies with the interval of exposure and carrying capacity
- Immigration may not "rescue" populations unless very frequent

References

- Haislip NA, Gray MJ, Hoverman JT, Miller DL (2011) Development and disease: how susceptibility to an emerging pathogen changes through anuran development. PLoS One 6:e22307
- Harper EB, Rittenhouse TAG, Semlitsch RD (2008) Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: Predicting extinction risks associated with inadequate size of buffer zones. Conserv. Biol. 22:1205-1215.
- Muths E, Scherer RD, Corn PS, Lambert BA (2006) Estimation of temporary emigration in male toads. Ecology 87:1048-1056.
- Price SJ, Garner TWJ, Nichols RA, Balloux F, Ayres C, Mora-Cabello de Alba A, Bosch J (2014) Collapse of amphibian communities due to an introduced Ranavirus. Curr. Biol. 24:1-6.
- Richter SC, Seigel RA (2002) Annual variation in the population ecology of the endangered gopher frog, Rana sevosa Goin and Netting. Copeia 2002:962-972.

References cont.

- Richter SC, Young JE, Johnson GN, Seigel RA (2003) Stochastic variation in reproductive success of a rare frog, Rana sevosa: implications for conservation and for monitoring amphibian populations. Biol. Conserv 111:171-177.
- Sutton WB, Gray MJ, Hardman RH, Wilkes RP, Kouba AJ, Miller DL (2014) High susceptibility of the endangered dusky gopher frog to ranavirus. Dis. Aquat. Org. 112:9-16.
- Teacher AGF, Cunningham AA, Garner TWJ (2010) Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 13:514-522
- Wheelwright NT, Gray MJ, Hill RD, Miller DL (2014) Sudden mass die-off of a large population of wood frog (Lithobates sylvaticus) tadpoles in Maine, USA, likely due to ranavirus. Herp. Rev. 45:240-242.

