Successes and pitfalls of amphibian anti-ranaviral
innate immune defenses
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Ranaviruses: emerging cold-blooded killers

Ranavirus (family Iridoviridae):
Icosahedral, dsDNA viruses
Wide susceptible host range
Juveniles most susceptible

Frog Virus 3 (FV3) disseminating
to new hosts
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Xenopus laevis - FV3:

a model of amphibian anti-ranaviral immunity

X. laevis is an ideal platform for FV3 research
X. laevis adults successfully clear FV3 infections
Tadpoles succumb to FV3 infection within a month

What amphibian innate immune components confer susceptibility
and resistance to FV3?




The innate immune svstem
Immune system

|
' '

Innate Acquired
Bloodbourne Physical barriers T-cell immunity B-cell immunity
(cell-mediated immunity) (humoral immunity)
Complement 1.5kin Whole T-ells
«cascade Phagocytes 2. Mucous membranes. released into: BAUgE Eposine

Alternative
pathway 2 Macrophages 5. Stomach acid Suppressor  Helper ~ Cytotoxic
Teells Tcells  Tcells

5.Natura kllrcells: Plasma cells Clonal B-cells
Stops infection
before t enters rerrermro
the body Deithofthe bodyscally dbodies Memory B-cells
Death of dangerous that are infected with a Antibode Y
organisms virus or otherwise
damaged Complement
cascade
Direct kiling |
of bacteris, Clasical
pathway

= virtual: dicalcentre.com

2/29/16

3.saliva
} | e }
1. Neutrophils urine and tears. Lymphoblasts

Cytokine regulation of innate immunity
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innate immune response in comparison with adult frogs”

inflammation-associated (TNF-q, IL-18 and IFN-y) and antiviral (Mx1)
genes

coli stimulation
“Our study suggests that tadpole susceptibility to FV3 infection is

partially due to poor virus-elicited innate immune responses”

- De Jesus Andino et al., 2012

“Susceptibility of Xenopus laevis tadpoles to infection by the
ranavirus Frog Virus 3 correlates with a reduced and delayed

Tadpoles exhibit modest and delayed leukocyte and tissue expression of

The same tadpole genes are readily unregulated following heat-killed E.




What are the roles of amphibian antiviral interferons
(IFNs) during FV3 infections?

Mammals possess IFNa, B, k, o, €
(8 only in pigs and T in ruminants)

Most are multi-gene families

Fish and amphibians do not have
IFNo, B ...

Instead possess unique type | IFNs

The amphibian IFN system remains
largely not described
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The evolution of vertebrate IFN immunity

Reptiles, birds and mammals: a
- possess intron-less type | IFN g
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- possess 5 exon /4 intron type | IFN
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X. laevis type | IFN confers anti-FV3 protection
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X. laevis type | IFN confers anti-FV3 protection
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Summary

Adult X. laevis are resistant to FV3
- mount faster and more robust IFN gene expression
- could be a factor contributing to resistance
Adults possess higher viral burdens despite this heightened antiviral
response
Type | IFN lowers viral burdens and extends tadpoles survival
- Inefficient antiviral immunity?
- Possible determinant of susceptibility

- Likely other contributing factors

Why do tadpoles possess lower FV3 loads but still die from infection?

Grayfer et al., 2014




The evolution of vertebrate IFN immunity

Reptiles, birds and mammals: ]

- possess intron-less type | IFN genes

- IFN-A1, IFN-A2 and IFN-A3 (IL29, IL28A and IL28B, respectively) m

- encoded by 5 exon / 4 intron genes

- similar antiviral effects to those conferred by type | IFNs

Bony fish:

- possess 5 exon / 4 intron type | IFN genes !m’
- currently believed to lack type Il IFNs

Amphibians:

- possess 5 exon / 4 intron type | IFN genes m
- possess 5 exon / 4 intron type Il IFN genes m
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FV3-infected tadpoles rapidly upregulate their kidney
Type Il IFN gene expression
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Grayfer et al., 2015

Type | IFN confers greater anti-FV3 protection of A6
cells than type Il IFN
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Type | IFN elicits greater expression of tadpole kidney
IFN-stimulated genes than the type Il IFN
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Type | IFN provides greater tadpoles
anti-FV3 protection than type Il IFN
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Interferon cytokine signaling
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FV3-infected tadpole kidney type Il IFN receptor gene
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The induction of cellular antiviral state
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Frog Virus 3:
a formidable foe of amphibian immunity

98 putative open reading frames
Function of ~1/3 of these known or inferred
Several of these are putative immune evasion genes

VCARD and vIF-2a

P! gy reveals that Frog Virus 3 mutants lacking
either the 18K immediate-early gene or the truncated vIF-2alpha gene are
defective for replication and growth in vivo.

-Chen et al., 2011
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rXNIFNA confers equal to greater protection than
rX/IFN against AvVCARD- and AvIF-2a-FV3
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Summary

Tadpoles upregulate type Ill over type | IFN expression during FV3 infections

FV3 dampens the tadpole type Ill IFN responses (vIF-2a and vCARD)

Relative anti-FV3 efficacies of type | Vs type Ill IFNs may reflect this

Insights into amphibian type | and type Ill IFN responses will help defined
immune limitations of these animals and enhance our appreciation for the

evolutionary origins of our own antiviral defenses

Why do significantly lowered FV3 burdens still lead to tadpole mortality?




Early evidence for FV3 pathogenesis and cell tropism

Aubertin A.M., Hirth C., Travo C., Nonnenmacher H., Kirn A. Preparation and
properties of an inhibitory extract from frog virus 3 particles. J. Virol.
1973;11:694-701.

- Solubilization of FV3 prepackaged components
- Soluble components inhibit host nucleic acid synthesis
- Neutralization of the activity by anti-FV3 Ab

Gut J.P., Anton M., Bingen A., Vetter J.M., Kirn A. Frog virus 3 induces a fatal
hepatitis in rats. Lab. Invest. 1981;45:218-228.

Kimn A., Gut J.P., Elharrar M. FV3 (Frog Virus 3) toxicity for the mouse. Nouv.
Presse. Med. 1972;1:19-43.

Elharrar M., Hirth C., Blanc J., Kirn A. Pathogenesis of the toxic hepatitis of
mice provoked by FV3 (frog virus 3): Inhibition of the liver macr |
synthesis. Biochem. Biophys. Acta. 1973;319:91-102.
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The truth is out there!

Kirn A., Steffan A.M., Bingen A. Inhibition of e is by cull d rat
Kupffer cells infected with frog virus 3. J. Reuculoendothel Soc. 1980;28:381—
388.

Gendrault J.L., Steffan A.M., Bingen A., Kirn A. Penetration and uncoating of frog
virus 3 (FV3) in cultured rat Kupffer cells. Virology. 1981;112:375-384.

Kirn A., Bingen A., Steffan A.M., Wild M.T., Keller F., Cinqualbre J. Endocytic
capacities of Kupffer cells isolated from the human adult liver. Hepatology.
1982;2:216-222.

Hagmann W., Steffan Al
virus 3-induced hepatit

Kirn A., Keppler D. Leukotrienes as mediators in frog
rats. Hepatology. 1987;7:732-736.

Murine Hepatitis Induced by Frog Virus 3 (FV 3)

A.Kim, J.L. Gendrault, A.M. Steffan, J.P. Gut, and A. Bingen
Laboratoire de Virologie

Unité INSERM U 74

3 rue Koeberlé

67000 Strasbourg

France

Figure 1 : Mouse Kupffer cell 15 min after the infection with FV 3.
Numerous virus particles may be observed within the cellular
cytoplasm (<),




Macrophage development and differentiation

Macrophage populations
Less-flexible programming—determined during ontogeny
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Macrophage development and differentiation

Macrophage activation phenotypes
Flexible programming—driven by microenvironmental signals

Cykotines, transcription factors and epigenetic changes
modulate phenotypxc and functonal plasicity
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The Mighty Macrophage
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Amphibian macrophage vectors of ranaviral disease

Electron mit of peritoneal from FV3-infected Xenopus laevis adults.

Morales HD, Abramowitz L, Gertz J, Sowa J, Vogel A, Robert J. Innate immune responses
n issi to irus infection of peritonea in the frog Xenopus
laevis. J Virol. 2010 May; 84(10):4912-22,

Current understanding of monopoiesis
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Current understanding of amphibian monopoiesis
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Colony-Stimulating Factor-1 (CSF-1) is a principal macrophage

growth factor
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Hashimoto, D. et al., 2011 Denditc cell and Macrophage Heterogeneiety In Vivo. Immunity 35: 323-35

Mechanisms of Xenopus laevis monopoiesis?

Amphibian macrophage development is poorly understood
Xenopus is a key stage in the evolution of vertebrate physiology
Distinct immune systems in tadpoles and adults

Macrophages are central to emerging Ranavirus infections
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CSF-1 gene synteny
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CSF-1 is a central X. laevis macrophage growth and
differentiation factor

Grayfer L., Robert, J. Colony-sti ing factor-1 ive macrophage
precursors reside in the amphibian (Xenopus laevis) bone marrow rather than
the hematopoietic sub-capsular liver. J. Innate Immunity. 2013;5:531-542.

Interleukin-34 (IL-34)

CSF-1 is integral to macrophage heterogeneity

IL-34 has no sequence identity with CSF-1

Binds the CSF-1R and contributes to monopoiesis

What is the immunological necessity for a second CSF1-R ligand?

What (if any) are the roles of frog IL-34?

13



Isolation of peritoneal macrophages
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Isolation of peritoneal macrophages
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CSF-1 and IL-34 chemo-attract and differentiate
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X. laevis tadpole CSF-1 and IL-34 derived
macrophages are cytologically distinct
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CSF-1 compounds tadpole FV3 infections
IL-34 extends FV3-infected tadpole survival

8

—control — CSF-1 = - IL-34

8

Percent tadpole survival
8 3

1 2 3 4 5 L] 7 8 9 0 " 12 13 14 15 16
Days post FV3 infection

Grayfer and Robert, 2014

CSF-1 macrophages are more susceptible to FV3
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IL-34 macrophages exhibit greater resistance to FV3
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IL-34 macrophages express greater type | IFN
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IL-34 macrophages express greater type | IFN
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Tadpole susceptibility to FV3 coincides with inadequate
kidney IL-34 gene expression
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Grayfer and Robert, 2014 Time post FV3 inefction

Immune efficacies of X. laevis tadpoles and adult frogs
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Summary

X. laevis CSF-1 and IL-34 macrophages are distinct '

CSF-1 renders tadpoles more susceptible to FV3
IL-34 confers anti-FV3 protection y “
- production of the antiviral type | IFN
During FV3 challenge, tadpoles upregulate their kidney gene expression of
CSF-1 but not IL-34
- thus, they increase the numbers of FV3 susceptible, but not antiviral M

- IL-34 macrophages are prominent type | IFN producers
- lack of tadpole kidney IL-34 M¢ explains inadequate IFN expression

Tadpole resistance to FV3 may be enhanced by amending their kidney
expression of IL-34 and IFN

Extending tadpole survival and lowering FV3 burdens would significantly
reduce the ecological devastation caused by ranaviruses
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Concluding remarks

Suffice it to say, aquatic and terrestrial vertebrate species evolved
from a common ancestor but have been subject to distinct pressures

The immune system as an important component of vertebrate

physiology

In turn, physiology (and environment) dictate immunity

The amphibian immune system has both similarities and disparities

from those of mammals

Gaining greater understanding into the pressures, efficacies and
inefficacies of these animals will lend to understanding the successes
and pitfalls of their immune systems

Studies of this nature will grant us greater insight into the evolutionary
origins of our own immune systems
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